Finetuned Cross Encoder L6 V2
這是一個基於cross-encoder/ms-marco-MiniLM-L6-v2微調的交叉編碼器模型,主要用於文本重排序和語義搜索任務。
下載量 22
發布時間 : 5/13/2025
模型概述
該模型計算文本對的分數,可用於文本重排序和語義搜索,基於Sentence Transformers庫訓練。
模型特點
高效文本重排序
能夠高效計算文本對的相似度分數,適用於重排序任務。
基於MiniLM架構
基於高效的MiniLM-L6-v2架構,在保持性能的同時減少計算資源需求。
優化的損失函數
使用FitMixinLoss進行訓練,優化了模型的重排序性能。
模型能力
文本相似度計算
文本重排序
語義搜索
使用案例
信息檢索
搜索結果重排序
對搜索引擎返回的結果進行重新排序,提高相關性。
在評估數據集上達到0.597的NDCG@10分數
問答系統
答案候選排序
對問答系統生成的多個候選答案進行相關性排序。
🚀 基於 cross-encoder/ms-marco-MiniLM-L6-v2 的交叉編碼器
這是一個基於 cross-encoder/ms-marco-MiniLM-L6-v2 微調的 交叉編碼器 模型,使用了 sentence-transformers 庫。它可以計算文本對的得分,可用於文本重排序和語義搜索。
🚀 快速開始
本模型可用於計算文本對的得分,適用於文本重排序和語義搜索等任務。下面將為你介紹如何使用該模型。
✨ 主要特性
- 基於
cross-encoder/ms-marco-MiniLM-L6-v2
微調,可計算文本對得分。 - 適用於文本重排序和語義搜索任務。
📦 安裝指南
首先,你需要安裝 sentence-transformers
庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import CrossEncoder
# 從 Hugging Face Hub 下載模型
model = CrossEncoder("CharlesPing/finetuned-cross-encoder-l6-v2")
# 獲取文本對的得分
pairs = [
['‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”', 'Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".'],
['After the 9/11 terrorist attacks grounded commercial air traffic, "there was a temperature drop while the airplanes weren\'t flying, for the week afterwards."', 'Play media At 9:42\xa0a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.'],
['But the central message of the IPCC AR4, is confirmed by the peer reviewed literature.', 'Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.'],
['"Many people think the science of climate change is settled.', 'During his administration, the bridge from Filadelfia and Liberia was constructed, as was the Old National Theater.'],
['“Even if you could calculate some sort of meaningful global temperature statistic, the figure would be unimportant.', 'Quantitative information or data is based on quantities obtained using a quantifiable measurement process.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# 或者根據與單個文本的相似度對不同文本進行排序
ranks = model.rank(
'‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”',
[
'Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".',
'Play media At 9:42\xa0a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.',
'Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.',
'During his administration, the bridge from Filadelfia and Liberia was constructed, as was the Old National Theater.',
'Quantitative information or data is based on quantities obtained using a quantifiable measurement process.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 交叉編碼器 |
基礎模型 | cross-encoder/ms-marco-MiniLM-L6-v2 |
最大序列長度 | 512 個詞元 |
輸出標籤數量 | 1 個標籤 |
模型來源
- 文檔:Sentence Transformers 文檔
- 文檔:交叉編碼器文檔
- 倉庫:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的交叉編碼器
評估
指標
交叉編碼器重排序
- 數據集:
cross-rerank-dev-mixed-neg
- 使用
CrossEncoderRerankingEvaluator
進行評估,參數如下:{ "at_k": 10 }
指標 | 值 |
---|---|
map | 0.4873 |
mrr@10 | 0.4839 |
ndcg@10 | 0.5971 |
訓練詳情
訓練數據集
未命名數據集
- 大小:22,258 個訓練樣本
- 列:
sentence_0
、sentence_1
和label
- 基於前 1000 個樣本的近似統計信息:
| | sentence_0 | sentence_1 | label |
|------|------|------|------|
| 類型 | 字符串 | 字符串 | 浮點數 |
| 詳情 |
- 最小長度:26 個字符
- 平均長度:121.91 個字符
- 最大長度:319 個字符
- 最小長度:36 個字符
- 平均長度:140.85 個字符
- 最大長度:573 個字符
- 最小值:0.0
- 平均值:0.16
- 最大值:1.0
- 樣本:
| sentence_0 | sentence_1 | label |
|------|------|------|
|
‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”
|Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".
|1.0
| |After the 9/11 terrorist attacks grounded commercial air traffic, "there was a temperature drop while the airplanes weren't flying, for the week afterwards."
|Play media At 9:42 a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.
|1.0
| |But the central message of the IPCC AR4, is confirmed by the peer reviewed literature.
|Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.
|1.0
| - 損失函數:
FitMixinLoss
訓練超參數
非默認超參數
eval_strategy
:按步數評估per_device_train_batch_size
:16per_device_eval_batch_size
:16
所有超參數
點擊展開
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
訓練日誌
輪數 | 步數 | 訓練損失 | cross-rerank-dev-mixed-neg_ndcg@10 |
---|---|---|---|
0.3592 | 500 | 0.4259 | 0.5154 |
0.7184 | 1000 | 0.3346 | 0.5497 |
1.0 | 1392 | - | 0.5640 |
1.0776 | 1500 | 0.3171 | 0.5660 |
1.4368 | 2000 | 0.2826 | 0.5669 |
1.7960 | 2500 | 0.281 | 0.5802 |
2.0 | 2784 | - | 0.5834 |
2.1552 | 3000 | 0.2553 | 0.5842 |
2.5144 | 3500 | 0.2326 | 0.5961 |
2.8736 | 4000 | 0.2408 | 0.5971 |
框架版本
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
🔧 技術細節
本模型基於 cross-encoder/ms-marco-MiniLM-L6-v2
微調,使用 sentence-transformers
庫進行訓練。訓練過程中使用了特定的超參數和損失函數,以優化模型在文本重排序任務上的性能。
📄 許可證
文檔中未提及相關許可證信息。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98