Resume Job Matcher All MiniLM L6 V2
一个基于MiniLM-L6-v2架构的句子嵌入模型,专门用于计算句子相似度和特征提取。
下载量 124
发布时间 : 4/16/2025
模型简介
该模型通过将句子转换为高维向量表示,用于计算句子间的语义相似度,适用于简历匹配、信息检索等任务。
模型特点
高效的句子嵌入
能够快速将句子转换为高质量的向量表示,适用于实时应用场景。
优化的相似度计算
使用余弦相似度损失进行训练,专门优化了句子间的语义相似度计算。
轻量级架构
基于MiniLM架构,在保持较高性能的同时减少了模型复杂度。
模型能力
句子向量化
语义相似度计算
特征提取
文本匹配
使用案例
人力资源
简历匹配
将求职者简历与职位描述进行语义匹配,提高招聘效率。
皮尔逊余弦相似度达到0.537
信息检索
文档相似度搜索
在大规模文档库中查找语义相似的文档。
🚀 基于sentence-transformers/all-MiniLM-L6-v2的句子转换器
这是一个基于 sentence-transformers/all-MiniLM-L6-v2 微调的 sentence-transformers 模型。它可以将句子和段落映射到384维的密集向量空间,可用于语义文本相似度、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
安装Sentence Transformers库
pip install -U sentence-transformers
加载模型并进行推理
from sentence_transformers import SentenceTransformer
# 从🤗 Hub下载
model = SentenceTransformer("anass1209/resume-job-matcher-all-MiniLM-L6-v2")
# 运行推理
sentences = [
'Developed and maintained core backend services using Python and Django, focusing on scalability and efficiency. Implemented RESTful APIs for data retrieval and manipulation. Worked extensively with PostgreSQL for data storage and retrieval. Responsible for optimizing database queries and improving API response times. Experience with model fine-tuning for semantic search and document retrieval using pre-trained embedding models like Sentence Transformers or similar libraries, specifically for improving the relevance of search results and document matching within the web application. Experience using vector databases (e.g., ChromaDB, Weaviate) preferred.',
'## Senior Backend Engineer\n\n* **ABC Corp** | 2020 - Present\n* Led development of a new REST API for user authentication and profile management using Python and Django.\n* Managed a PostgreSQL database, optimizing queries and schema design for improved performance, resulting in a 20% reduction in average API response time.\n* Improved system scalability through efficient code design and load balancing techniques.\n* Experience using pre-trained embedding models (BERT) for natural language processing tasks to improve search accuracy, with focus on keyphrase extraction and content similarity comparison for the recommendations engine. Proficient in Flask.',
"PhD in Computer Science, University of California, Berkeley (2018-2023). Dissertation: 'Adversarial Robustness in NLP for Cybersecurity Applications.' Focused on fine-tuning BERT for malware detection and social engineering attacks. Proficient in Python, TensorFlow, and AWS. Published in top-tier NLP and security conferences. Experienced with large datasets and model evaluation metrics.\n\nMaster of Science in Cybersecurity, Johns Hopkins University (2016-2018). Relevant coursework included Machine Learning, Data Mining, and Network Security. Developed a system for anomaly detection using a recurrent neural network (RNN). Familiar with Python and cloud computing platforms. Good understanding of NLP concepts, but limited experience fine-tuning transformer models. Strong understanding of Information Security Principles.\n\nBachelor of Science in Computer Engineering, Carnegie Mellon University (2012-2016). Relevant coursework: Artificial Intelligence, Database Management, and Software Engineering. Project experience: Developed a web application using Python. No direct experience with fine-tuning NLP models, but a strong foundation in programming and data structures. Familiar with cloud infrastructure concepts. Possess CISSP certification.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 语义文本相似度计算:能够计算句子和段落之间的语义相似度。
- 多任务应用:可用于语义搜索、释义挖掘、文本分类、聚类等多种自然语言处理任务。
- 高维向量映射:将句子和段落映射到384维的密集向量空间。
📦 安装指南
安装Sentence Transformers库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从🤗 Hub下载
model = SentenceTransformer("anass1209/resume-job-matcher-all-MiniLM-L6-v2")
# 运行推理
sentences = [
'Developed and maintained core backend services using Python and Django, focusing on scalability and efficiency. Implemented RESTful APIs for data retrieval and manipulation. Worked extensively with PostgreSQL for data storage and retrieval. Responsible for optimizing database queries and improving API response times. Experience with model fine-tuning for semantic search and document retrieval using pre-trained embedding models like Sentence Transformers or similar libraries, specifically for improving the relevance of search results and document matching within the web application. Experience using vector databases (e.g., ChromaDB, Weaviate) preferred.',
'## Senior Backend Engineer\n\n* **ABC Corp** | 2020 - Present\n* Led development of a new REST API for user authentication and profile management using Python and Django.\n* Managed a PostgreSQL database, optimizing queries and schema design for improved performance, resulting in a 20% reduction in average API response time.\n* Improved system scalability through efficient code design and load balancing techniques.\n* Experience using pre-trained embedding models (BERT) for natural language processing tasks to improve search accuracy, with focus on keyphrase extraction and content similarity comparison for the recommendations engine. Proficient in Flask.',
"PhD in Computer Science, University of California, Berkeley (2018-2023). Dissertation: 'Adversarial Robustness in NLP for Cybersecurity Applications.' Focused on fine-tuning BERT for malware detection and social engineering attacks. Proficient in Python, TensorFlow, and AWS. Published in top-tier NLP and security conferences. Experienced with large datasets and model evaluation metrics.\n\nMaster of Science in Cybersecurity, Johns Hopkins University (2016-2018). Relevant coursework included Machine Learning, Data Mining, and Network Security. Developed a system for anomaly detection using a recurrent neural network (RNN). Familiar with Python and cloud computing platforms. Good understanding of NLP concepts, but limited experience fine-tuning transformer models. Strong understanding of Information Security Principles.\n\nBachelor of Science in Computer Engineering, Carnegie Mellon University (2012-2016). Relevant coursework: Artificial Intelligence, Database Management, and Software Engineering. Project experience: Developed a web application using Python. No direct experience with fine-tuning NLP models, but a strong foundation in programming and data structures. Familiar with cloud infrastructure concepts. Possess CISSP certification.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | sentence-transformers/all-MiniLM-L6-v2 |
最大序列长度 | 256个标记 |
输出维度 | 384维 |
相似度函数 | 余弦相似度 |
模型来源
- 文档:Sentence Transformers Documentation
- 仓库:Sentence Transformers on GitHub
- Hugging Face:Sentence Transformers on Hugging Face
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
评估
指标
语义相似度
- 数据集:
dev_evaluation
和test_evaluation
- 评估方法:使用
EmbeddingSimilarityEvaluator
进行评估
指标 | dev_evaluation | test_evaluation |
---|---|---|
pearson_cosine | 0.5379 | 0.5379 |
spearman_cosine | 0.6213 | 0.6213 |
训练详情
训练数据集
未命名数据集
- 大小:958个训练样本
- 列:
sentence_0
,sentence_1
和label
- 基于前958个样本的近似统计信息:
| | sentence_0 | sentence_1 | label |
|------|-----------------|-----------------|-----------------|
| 类型 | 字符串 | 字符串 | 浮点数 |
| 详情 |
- 最小:41个标记
- 平均:110.12个标记
- 最大:234个标记
- 最小:25个标记
- 平均:134.18个标记
- 最大:256个标记
- 最小:0.5
- 平均:0.78
- 最大:0.96
训练超参数
非默认超参数
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 50multi_dataset_batch_sampler
: round_robin
框架版本
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
🔧 技术细节
训练日志
轮次 | 步骤 | 训练损失 | dev_evaluation_spearman_cosine | test_evaluation_spearman_cosine |
---|---|---|---|---|
1.0 | 60 | - | 0.4867 | - |
2.0 | 120 | - | 0.5612 | - |
3.0 | 180 | - | 0.5929 | - |
4.0 | 240 | - | 0.6229 | - |
5.0 | 300 | - | 0.6377 | - |
6.0 | 360 | - | 0.6434 | - |
7.0 | 420 | - | 0.6104 | - |
8.0 | 480 | - | 0.6064 | - |
8.3333 | 500 | 0.0122 | - | - |
9.0 | 540 | - | 0.6005 | - |
10.0 | 600 | - | 0.6064 | - |
11.0 | 660 | - | 0.5973 | - |
12.0 | 720 | - | 0.6097 | - |
13.0 | 780 | - | 0.5907 | - |
14.0 | 840 | - | 0.5870 | - |
15.0 | 900 | - | 0.5989 | - |
16.0 | 960 | - | 0.6018 | - |
16.6667 | 1000 | 0.0019 | - | - |
17.0 | 1020 | - | 0.6208 | - |
18.0 | 1080 | - | 0.6133 | - |
19.0 | 1140 | - | 0.6200 | - |
20.0 | 1200 | - | 0.5960 | - |
21.0 | 1260 | - | 0.5999 | - |
22.0 | 1320 | - | 0.5995 | - |
23.0 | 1380 | - | 0.6177 | - |
24.0 | 1440 | - | 0.6201 | - |
25.0 | 1500 | 0.0009 | 0.6110 | - |
26.0 | 1560 | - | 0.6184 | - |
27.0 | 1620 | - | 0.6133 | - |
28.0 | 1680 | - | 0.6287 | - |
29.0 | 1740 | - | 0.6200 | - |
30.0 | 1800 | - | 0.6272 | - |
31.0 | 1860 | - | 0.6222 | - |
32.0 | 1920 | - | 0.6199 | - |
33.0 | 1980 | - | 0.6141 | - |
33.3333 | 2000 | 0.0006 | - | - |
34.0 | 2040 | - | 0.6228 | - |
35.0 | 2100 | - | 0.6275 | - |
36.0 | 2160 | - | 0.6167 | - |
37.0 | 2220 | - | 0.6140 | - |
38.0 | 2280 | - | 0.6217 | - |
39.0 | 2340 | - | 0.6280 | - |
40.0 | 2400 | - | 0.6254 | - |
41.0 | 2460 | - | 0.6186 | - |
41.6667 | 2500 | 0.0005 | - | - |
42.0 | 2520 | - | 0.6185 | - |
43.0 | 2580 | - | 0.6242 | - |
44.0 | 2640 | - | 0.6183 | - |
45.0 | 2700 | - | 0.6213 | - |
46.0 | 2760 | - | 0.6220 | - |
47.0 | 2820 | - | 0.6213 | - |
48.0 | 2880 | - | 0.6213 | - |
49.0 | 2940 | - | 0.6214 | - |
50.0 | 3000 | 0.0004 | 0.6213 | - |
-1 | -1 | - | - | 0.6213 |
📄 许可证
文档中未提及相关许可证信息。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98