Resume Job Matcher All MiniLM L6 V2
一個基於MiniLM-L6-v2架構的句子嵌入模型,專門用於計算句子相似度和特徵提取。
下載量 124
發布時間 : 4/16/2025
模型概述
該模型通過將句子轉換為高維向量表示,用於計算句子間的語義相似度,適用於簡歷匹配、信息檢索等任務。
模型特點
高效的句子嵌入
能夠快速將句子轉換為高質量的向量表示,適用於即時應用場景。
優化的相似度計算
使用餘弦相似度損失進行訓練,專門優化了句子間的語義相似度計算。
輕量級架構
基於MiniLM架構,在保持較高性能的同時減少了模型複雜度。
模型能力
句子向量化
語義相似度計算
特徵提取
文本匹配
使用案例
人力資源
簡歷匹配
將求職者簡歷與職位描述進行語義匹配,提高招聘效率。
皮爾遜餘弦相似度達到0.537
信息檢索
文檔相似度搜索
在大規模文檔庫中查找語義相似的文檔。
🚀 基於sentence-transformers/all-MiniLM-L6-v2的句子轉換器
這是一個基於 sentence-transformers/all-MiniLM-L6-v2 微調的 sentence-transformers 模型。它可以將句子和段落映射到384維的密集向量空間,可用於語義文本相似度、語義搜索、釋義挖掘、文本分類、聚類等任務。
🚀 快速開始
安裝Sentence Transformers庫
pip install -U sentence-transformers
加載模型並進行推理
from sentence_transformers import SentenceTransformer
# 從🤗 Hub下載
model = SentenceTransformer("anass1209/resume-job-matcher-all-MiniLM-L6-v2")
# 運行推理
sentences = [
'Developed and maintained core backend services using Python and Django, focusing on scalability and efficiency. Implemented RESTful APIs for data retrieval and manipulation. Worked extensively with PostgreSQL for data storage and retrieval. Responsible for optimizing database queries and improving API response times. Experience with model fine-tuning for semantic search and document retrieval using pre-trained embedding models like Sentence Transformers or similar libraries, specifically for improving the relevance of search results and document matching within the web application. Experience using vector databases (e.g., ChromaDB, Weaviate) preferred.',
'## Senior Backend Engineer\n\n* **ABC Corp** | 2020 - Present\n* Led development of a new REST API for user authentication and profile management using Python and Django.\n* Managed a PostgreSQL database, optimizing queries and schema design for improved performance, resulting in a 20% reduction in average API response time.\n* Improved system scalability through efficient code design and load balancing techniques.\n* Experience using pre-trained embedding models (BERT) for natural language processing tasks to improve search accuracy, with focus on keyphrase extraction and content similarity comparison for the recommendations engine. Proficient in Flask.',
"PhD in Computer Science, University of California, Berkeley (2018-2023). Dissertation: 'Adversarial Robustness in NLP for Cybersecurity Applications.' Focused on fine-tuning BERT for malware detection and social engineering attacks. Proficient in Python, TensorFlow, and AWS. Published in top-tier NLP and security conferences. Experienced with large datasets and model evaluation metrics.\n\nMaster of Science in Cybersecurity, Johns Hopkins University (2016-2018). Relevant coursework included Machine Learning, Data Mining, and Network Security. Developed a system for anomaly detection using a recurrent neural network (RNN). Familiar with Python and cloud computing platforms. Good understanding of NLP concepts, but limited experience fine-tuning transformer models. Strong understanding of Information Security Principles.\n\nBachelor of Science in Computer Engineering, Carnegie Mellon University (2012-2016). Relevant coursework: Artificial Intelligence, Database Management, and Software Engineering. Project experience: Developed a web application using Python. No direct experience with fine-tuning NLP models, but a strong foundation in programming and data structures. Familiar with cloud infrastructure concepts. Possess CISSP certification.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 語義文本相似度計算:能夠計算句子和段落之間的語義相似度。
- 多任務應用:可用於語義搜索、釋義挖掘、文本分類、聚類等多種自然語言處理任務。
- 高維向量映射:將句子和段落映射到384維的密集向量空間。
📦 安裝指南
安裝Sentence Transformers庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
# 從🤗 Hub下載
model = SentenceTransformer("anass1209/resume-job-matcher-all-MiniLM-L6-v2")
# 運行推理
sentences = [
'Developed and maintained core backend services using Python and Django, focusing on scalability and efficiency. Implemented RESTful APIs for data retrieval and manipulation. Worked extensively with PostgreSQL for data storage and retrieval. Responsible for optimizing database queries and improving API response times. Experience with model fine-tuning for semantic search and document retrieval using pre-trained embedding models like Sentence Transformers or similar libraries, specifically for improving the relevance of search results and document matching within the web application. Experience using vector databases (e.g., ChromaDB, Weaviate) preferred.',
'## Senior Backend Engineer\n\n* **ABC Corp** | 2020 - Present\n* Led development of a new REST API for user authentication and profile management using Python and Django.\n* Managed a PostgreSQL database, optimizing queries and schema design for improved performance, resulting in a 20% reduction in average API response time.\n* Improved system scalability through efficient code design and load balancing techniques.\n* Experience using pre-trained embedding models (BERT) for natural language processing tasks to improve search accuracy, with focus on keyphrase extraction and content similarity comparison for the recommendations engine. Proficient in Flask.',
"PhD in Computer Science, University of California, Berkeley (2018-2023). Dissertation: 'Adversarial Robustness in NLP for Cybersecurity Applications.' Focused on fine-tuning BERT for malware detection and social engineering attacks. Proficient in Python, TensorFlow, and AWS. Published in top-tier NLP and security conferences. Experienced with large datasets and model evaluation metrics.\n\nMaster of Science in Cybersecurity, Johns Hopkins University (2016-2018). Relevant coursework included Machine Learning, Data Mining, and Network Security. Developed a system for anomaly detection using a recurrent neural network (RNN). Familiar with Python and cloud computing platforms. Good understanding of NLP concepts, but limited experience fine-tuning transformer models. Strong understanding of Information Security Principles.\n\nBachelor of Science in Computer Engineering, Carnegie Mellon University (2012-2016). Relevant coursework: Artificial Intelligence, Database Management, and Software Engineering. Project experience: Developed a web application using Python. No direct experience with fine-tuning NLP models, but a strong foundation in programming and data structures. Familiar with cloud infrastructure concepts. Possess CISSP certification.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器 |
基礎模型 | sentence-transformers/all-MiniLM-L6-v2 |
最大序列長度 | 256個標記 |
輸出維度 | 384維 |
相似度函數 | 餘弦相似度 |
模型來源
- 文檔:Sentence Transformers Documentation
- 倉庫:Sentence Transformers on GitHub
- Hugging Face:Sentence Transformers on Hugging Face
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
評估
指標
語義相似度
- 數據集:
dev_evaluation
和test_evaluation
- 評估方法:使用
EmbeddingSimilarityEvaluator
進行評估
指標 | dev_evaluation | test_evaluation |
---|---|---|
pearson_cosine | 0.5379 | 0.5379 |
spearman_cosine | 0.6213 | 0.6213 |
訓練詳情
訓練數據集
未命名數據集
- 大小:958個訓練樣本
- 列:
sentence_0
,sentence_1
和label
- 基於前958個樣本的近似統計信息:
| | sentence_0 | sentence_1 | label |
|------|-----------------|-----------------|-----------------|
| 類型 | 字符串 | 字符串 | 浮點數 |
| 詳情 |
- 最小:41個標記
- 平均:110.12個標記
- 最大:234個標記
- 最小:25個標記
- 平均:134.18個標記
- 最大:256個標記
- 最小:0.5
- 平均:0.78
- 最大:0.96
訓練超參數
非默認超參數
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 50multi_dataset_batch_sampler
: round_robin
框架版本
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
🔧 技術細節
訓練日誌
輪次 | 步驟 | 訓練損失 | dev_evaluation_spearman_cosine | test_evaluation_spearman_cosine |
---|---|---|---|---|
1.0 | 60 | - | 0.4867 | - |
2.0 | 120 | - | 0.5612 | - |
3.0 | 180 | - | 0.5929 | - |
4.0 | 240 | - | 0.6229 | - |
5.0 | 300 | - | 0.6377 | - |
6.0 | 360 | - | 0.6434 | - |
7.0 | 420 | - | 0.6104 | - |
8.0 | 480 | - | 0.6064 | - |
8.3333 | 500 | 0.0122 | - | - |
9.0 | 540 | - | 0.6005 | - |
10.0 | 600 | - | 0.6064 | - |
11.0 | 660 | - | 0.5973 | - |
12.0 | 720 | - | 0.6097 | - |
13.0 | 780 | - | 0.5907 | - |
14.0 | 840 | - | 0.5870 | - |
15.0 | 900 | - | 0.5989 | - |
16.0 | 960 | - | 0.6018 | - |
16.6667 | 1000 | 0.0019 | - | - |
17.0 | 1020 | - | 0.6208 | - |
18.0 | 1080 | - | 0.6133 | - |
19.0 | 1140 | - | 0.6200 | - |
20.0 | 1200 | - | 0.5960 | - |
21.0 | 1260 | - | 0.5999 | - |
22.0 | 1320 | - | 0.5995 | - |
23.0 | 1380 | - | 0.6177 | - |
24.0 | 1440 | - | 0.6201 | - |
25.0 | 1500 | 0.0009 | 0.6110 | - |
26.0 | 1560 | - | 0.6184 | - |
27.0 | 1620 | - | 0.6133 | - |
28.0 | 1680 | - | 0.6287 | - |
29.0 | 1740 | - | 0.6200 | - |
30.0 | 1800 | - | 0.6272 | - |
31.0 | 1860 | - | 0.6222 | - |
32.0 | 1920 | - | 0.6199 | - |
33.0 | 1980 | - | 0.6141 | - |
33.3333 | 2000 | 0.0006 | - | - |
34.0 | 2040 | - | 0.6228 | - |
35.0 | 2100 | - | 0.6275 | - |
36.0 | 2160 | - | 0.6167 | - |
37.0 | 2220 | - | 0.6140 | - |
38.0 | 2280 | - | 0.6217 | - |
39.0 | 2340 | - | 0.6280 | - |
40.0 | 2400 | - | 0.6254 | - |
41.0 | 2460 | - | 0.6186 | - |
41.6667 | 2500 | 0.0005 | - | - |
42.0 | 2520 | - | 0.6185 | - |
43.0 | 2580 | - | 0.6242 | - |
44.0 | 2640 | - | 0.6183 | - |
45.0 | 2700 | - | 0.6213 | - |
46.0 | 2760 | - | 0.6220 | - |
47.0 | 2820 | - | 0.6213 | - |
48.0 | 2880 | - | 0.6213 | - |
49.0 | 2940 | - | 0.6214 | - |
50.0 | 3000 | 0.0004 | 0.6213 | - |
-1 | -1 | - | - | 0.6213 |
📄 許可證
文檔中未提及相關許可證信息。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98