Finetuned Ce Climate Multineg V1
这是一个从cross-encoder/ms-marco-MiniLM-L12-v2微调而来的交叉编码器模型,专门用于气候相关文本的重排序和语义搜索任务。
下载量 19
发布时间 : 5/17/2025
模型简介
该模型计算文本对的分数,可用于文本重排序和语义搜索,特别针对气候科学领域的文本优化。
模型特点
气候领域优化
专门针对气候科学领域的文本进行优化,能够更好地理解相关术语和概念。
高效重排序
能够快速计算文本对的相似度分数,适用于大规模文档的重排序任务。
多负样本训练
使用混合负样本训练策略,提高了模型区分相关和不相关文本的能力。
模型能力
文本相似度计算
语义搜索
文档重排序
气候领域文本理解
使用案例
信息检索
气候科学文献检索
在气候科学文献数据库中对搜索结果进行重排序,提高相关文档的排名。
首位归一化折损累积增益达到0.6748
问答系统
气候相关问题回答
在问答系统中用于评估候选答案与问题的相关性。
🚀 基于 cross-encoder/ms-marco-MiniLM-L12-v2 的交叉编码器
这是一个基于 Cross Encoder 的模型,它在 climate-cross-encoder-mixed-neg-v3 数据集上,使用 sentence-transformers 库对 cross-encoder/ms-marco-MiniLM-L12-v2 进行微调得到。该模型可以为文本对计算分数,可用于文本重排序和语义搜索。
🚀 快速开始
本模型可用于计算文本对的分数,进而实现文本重排序和语义搜索。下面将详细介绍如何使用该模型。
✨ 主要特性
- 基于
cross-encoder/ms-marco-MiniLM-L12-v2
进行微调,在climate-cross-encoder-mixed-neg-v3
数据集上训练。 - 能够计算文本对的分数,用于文本重排序和语义搜索。
- 支持使用
sentence-transformers
库进行推理和微调。
📦 安装指南
首先,你需要安装 sentence-transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
以下是如何加载模型并进行推理的示例:
from sentence_transformers import CrossEncoder
# 从 Hugging Face Hub 下载模型
model = CrossEncoder("CharlesPing/finetuned-ce-climate-multineg-v1")
# 获取文本对的分数
pairs = [
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'Greenhouse gases, in particular carbon dioxide and methane, played a significant role during the Eocene in controlling the surface temperature.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth history.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'While scientists knew of past climate change such as the ice ages, the concept of climate as unchanging was useful in the development of a general theory of what determines climate.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'Some long term modifications along the history of the planet have been significant, such as the incorporation of oxygen to the atmosphere.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# 或者根据与单个文本的相似度对不同文本进行排序
ranks = model.rank(
'Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.',
[
'Greenhouse gases, in particular carbon dioxide and methane, played a significant role during the Eocene in controlling the surface temperature.',
'Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record.',
'There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth history.',
'While scientists knew of past climate change such as the ice ages, the concept of climate as unchanging was useful in the development of a general theory of what determines climate.',
'Some long term modifications along the history of the planet have been significant, such as the incorporation of oxygen to the atmosphere.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 交叉编码器 |
基础模型 | cross-encoder/ms-marco-MiniLM-L12-v2 |
最大序列长度 | 512 个标记 |
输出标签数量 | 1 个标签 |
训练数据集 | climate-cross-encoder-mixed-neg-v3 |
模型资源
- 文档:Sentence Transformers 文档
- 文档:Cross Encoder 文档
- 代码仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的交叉编码器
评估
指标
交叉编码器重排序
- 数据集:
climate-rerank-multineg
- 使用
CrossEncoderRerankingEvaluator
进行评估,参数如下:{ "at_k": 1, "always_rerank_positives": false }
指标 | 值 |
---|---|
map | 0.6809 (-0.3191) |
mrr@1 | 0.6748 (-0.3252) |
ndcg@1 | 0.6748 (-0.3252) |
训练详情
训练数据集
climate-cross-encoder-mixed-neg-v3
- 数据集:climate-cross-encoder-mixed-neg-v3,版本为 cd49b57
- 大小:41,052 个训练样本
- 列:
query
、doc
和label
- 基于前 1000 个样本的近似统计信息:
查询 文档 标签 类型 字符串 字符串 浮点数 详情 - 最小长度:49 个字符
- 平均长度:140.03 个字符
- 最大长度:306 个字符
- 最小长度:4 个字符
- 平均长度:136.03 个字符
- 最大长度:731 个字符
- 最小值:0.0
- 平均值:0.09
- 最大值:1.0
- 样本:
查询 文档 标签 “A leading Canadian authority on polar bears, Mitch Taylor, said: ‘We’re seeing an increase in bears that’s really unprecedented, and in places where we’re seeing a decrease in the population
Warnings about the future of the polar bear are often contrasted with the fact that worldwide population estimates have increased over the past 50 years and are relatively stable today.
1.0
“A leading Canadian authority on polar bears, Mitch Taylor, said: ‘We’re seeing an increase in bears that’s really unprecedented, and in places where we’re seeing a decrease in the population
Species distribution models of recent years indicate that the deer tick, known as "I. scapularis," is pushing its distribution to higher latitudes of the Northeastern United States and Canada, as well as pushing and maintaining populations in the South Central and Northern Midwest regions of the United States.
0.0
“A leading Canadian authority on polar bears, Mitch Taylor, said: ‘We’re seeing an increase in bears that’s really unprecedented, and in places where we’re seeing a decrease in the population
Bear and deer are among the animals present.
0.0
- 损失函数:
BinaryCrossEntropyLoss
,参数如下:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
评估数据集
climate-cross-encoder-mixed-neg-v3
- 数据集:climate-cross-encoder-mixed-neg-v3,版本为 cd49b57
- 大小:4,290 个评估样本
- 列:
query
、doc
和label
- 基于前 1000 个样本的近似统计信息:
查询 文档 标签 类型 字符串 字符串 浮点数 详情 - 最小长度:39 个字符
- 平均长度:116.67 个字符
- 最大长度:240 个字符
- 最小长度:18 个字符
- 平均长度:132.92 个字符
- 最大长度:731 个字符
- 最小值:0.0
- 平均值:0.09
- 最大值:1.0
- 样本:
查询 文档 标签 Scientific analysis of past climates shows that greenhouse gasses, principally CO2, have controlled most ancient climate changes.
Greenhouse gases, in particular carbon dioxide and methane, played a significant role during the Eocene in controlling the surface temperature.
1.0
Scientific analysis of past climates shows that greenhouse gasses, principally CO2, have controlled most ancient climate changes.
Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record.
0.0
Scientific analysis of past climates shows that greenhouse gasses, principally CO2, have controlled most ancient climate changes.
There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth history.
0.0
- 损失函数:
BinaryCrossEntropyLoss
,参数如下:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
训练超参数
非默认超参数
eval_strategy
:stepsper_device_train_batch_size
:16per_device_eval_batch_size
:32learning_rate
:2e-05warmup_ratio
:0.1fp16
:Trueload_best_model_at_end
:True
所有超参数
点击展开
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:stepsprediction_loss_only
:Trueper_device_train_batch_size
:16per_device_eval_batch_size
:32per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:1eval_accumulation_steps
:Nonetorch_empty_cache_steps
:Nonelearning_rate
:2e-05weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1.0num_train_epochs
:3max_steps
:-1lr_scheduler_type
:linearlr_scheduler_kwargs
:{}warmup_ratio
:0.1warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Falsefp16
:Truefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:0dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Trueignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
:0fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torchoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Nonehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseinclude_for_metrics
:[]eval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseeval_on_start
:Falseuse_liger_kernel
:Falseeval_use_gather_object
:Falseaverage_tokens_across_devices
:Falseprompts
:Nonebatch_sampler
:batch_samplermulti_dataset_batch_sampler
:proportional
训练日志
轮次 | 步数 | 训练损失 | 验证损失 | climate-rerank-multineg_ndcg@1 |
---|---|---|---|---|
0.0390 | 100 | 0.5097 | - | - |
0.0779 | 200 | 0.3662 | - | - |
0.1169 | 300 | 0.3034 | - | - |
0.1559 | 400 | 0.2655 | - | - |
0.1949 | 500 | 0.2651 | 0.2262 | 0.6585 (-0.3415) |
0.2338 | 600 | 0.2161 | - | - |
0.2728 | 700 | 0.227 | - | - |
0.3118 | 800 | 0.235 | - | - |
0.3507 | 900 | 0.2243 | - | - |
0.3897 | 1000 | 0.2081 | 0.2174 | 0.6992 (-0.3008) |
0.4287 | 1100 | 0.1961 | - | - |
0.4677 | 1200 | 0.207 | - | - |
0.5066 | 1300 | 0.2375 | - | - |
0.5456 | 1400 | 0.2117 | - | - |
0.5846 | 1500 | 0.2058 | 0.2253 | 0.6748 (-0.3252) |
0.6235 | 1600 | 0.2163 | - | - |
0.6625 | 1700 | 0.2235 | - | - |
0.7015 | 1800 | 0.2193 | - | - |
0.7405 | 1900 | 0.1924 | - | - |
0.7794 | 2000 | 0.2084 | 0.2095 | 0.6748 (-0.3252) |
0.8184 | 2100 | 0.2113 | - | - |
0.8574 | 2200 | 0.2276 | - | - |
0.8963 | 2300 | 0.2071 | - | - |
0.9353 | 2400 | 0.2374 | - | - |
0.9743 | 2500 | 0.2173 | 0.2172 | 0.6667 (-0.3333) |
1.0133 | 2600 | 0.2011 | - | - |
1.0522 | 2700 | 0.1634 | - | - |
1.0912 | 2800 | 0.1807 | - | - |
1.1302 | 2900 | 0.1878 | - | - |
1.1691 | 3000 | 0.2037 | 0.2147 | 0.6911 (-0.3089) |
1.2081 | 3100 | 0.1904 | - | - |
1.2471 | 3200 | 0.1911 | - | - |
1.2860 | 3300 | 0.1828 | - | - |
1.3250 | 3400 | 0.1686 | - | - |
1.3640 | 3500 | 0.1892 | 0.2179 | 0.6992 (-0.3008) |
1.4030 | 3600 | 0.188 | - | - |
1.4419 | 3700 | 0.1691 | - | - |
1.4809 | 3800 | 0.1946 | - | - |
1.5199 | 3900 | 0.1938 | - | - |
1.5588 | 4000 | 0.211 | 0.2088 | 0.6992 (-0.3008) |
1.5978 | 4100 | 0.1826 | - | - |
1.6368 | 4200 | 0.1608 | - | - |
1.6758 | 4300 | 0.1782 | - | - |
1.7147 | 4400 | 0.1803 | - | - |
1.7537 | 4500 | 0.1804 | 0.2160 | 0.6911 (-0.3089) |
1.7927 | 4600 | 0.1823 | - | - |
1.8316 | 4700 | 0.1844 | - | - |
1.8706 | 4800 | 0.1727 | - | - |
1.9096 | 4900 | 0.1937 | - | - |
1.9486 | 5000 | 0.1662 | 0.2219 | 0.6829 (-0.3171) |
1.9875 | 5100 | 0.1653 | - | - |
2.0265 | 5200 | 0.1658 | - | - |
2.0655 | 5300 | 0.1316 | - | - |
2.1044 | 5400 | 0.1379 | - | - |
2.1434 | 5500 | 0.152 | 0.2513 | 0.6504 (-0.3496) |
2.1824 | 5600 | 0.1848 | - | - |
2.2214 | 5700 | 0.1507 | - | - |
2.2603 | 5800 | 0.1495 | - | - |
2.2993 | 5900 | 0.1469 | - | - |
2.3383 | 6000 | 0.1596 | 0.2407 | 0.6585 (-0.3415) |
2.3772 | 6100 | 0.1518 | - | - |
2.4162 | 6200 | 0.1351 | - | - |
2.4552 | 6300 | 0.1706 | - | - |
2.4942 | 6400 | 0.1538 | - | - |
2.5331 | 6500 | 0.1329 | 0.2505 | 0.6911 (-0.3089) |
2.5721 | 6600 | 0.147 | - | - |
2.6111 | 6700 | 0.1289 | - | - |
2.6500 | 6800 | 0.1698 | - | - |
2.6890 | 6900 | 0.1456 | - | - |
2.7280 | 7000 | 0.141 | 0.2618 | 0.6748 (-0.3252) |
2.7670 | 7100 | 0.1413 | - | - |
2.8059 | 7200 | 0.1474 | - | - |
2.8449 | 7300 | 0.1381 | - | - |
2.8839 | 7400 | 0.1252 | - | - |
2.9228 | 7500 | 0.1384 | 0.2608 | 0.6748 (-0.3252) |
2.9618 | 7600 | 0.1826 | - | - |
- 加粗行表示保存的检查点。
框架版本
- Python:3.11.12
- Sentence Transformers:4.1.0
- Transformers:4.51.3
- PyTorch:2.6.0+cu124
- Accelerate:1.6.0
- Datasets:3.6.0
- Tokenizers:0.21.1
📄 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98