Finetuned Ce Climate Multineg V1
這是一個從cross-encoder/ms-marco-MiniLM-L12-v2微調而來的交叉編碼器模型,專門用於氣候相關文本的重排序和語義搜索任務。
下載量 19
發布時間 : 5/17/2025
模型概述
該模型計算文本對的分數,可用於文本重排序和語義搜索,特別針對氣候科學領域的文本優化。
模型特點
氣候領域優化
專門針對氣候科學領域的文本進行優化,能夠更好地理解相關術語和概念。
高效重排序
能夠快速計算文本對的相似度分數,適用於大規模文檔的重排序任務。
多負樣本訓練
使用混合負樣本訓練策略,提高了模型區分相關和不相關文本的能力。
模型能力
文本相似度計算
語義搜索
文檔重排序
氣候領域文本理解
使用案例
信息檢索
氣候科學文獻檢索
在氣候科學文獻數據庫中對搜索結果進行重排序,提高相關文檔的排名。
首位歸一化折損累積增益達到0.6748
問答系統
氣候相關問題回答
在問答系統中用於評估候選答案與問題的相關性。
🚀 基於 cross-encoder/ms-marco-MiniLM-L12-v2 的交叉編碼器
這是一個基於 Cross Encoder 的模型,它在 climate-cross-encoder-mixed-neg-v3 數據集上,使用 sentence-transformers 庫對 cross-encoder/ms-marco-MiniLM-L12-v2 進行微調得到。該模型可以為文本對計算分數,可用於文本重排序和語義搜索。
🚀 快速開始
本模型可用於計算文本對的分數,進而實現文本重排序和語義搜索。下面將詳細介紹如何使用該模型。
✨ 主要特性
- 基於
cross-encoder/ms-marco-MiniLM-L12-v2
進行微調,在climate-cross-encoder-mixed-neg-v3
數據集上訓練。 - 能夠計算文本對的分數,用於文本重排序和語義搜索。
- 支持使用
sentence-transformers
庫進行推理和微調。
📦 安裝指南
首先,你需要安裝 sentence-transformers
庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
以下是如何加載模型並進行推理的示例:
from sentence_transformers import CrossEncoder
# 從 Hugging Face Hub 下載模型
model = CrossEncoder("CharlesPing/finetuned-ce-climate-multineg-v1")
# 獲取文本對的分數
pairs = [
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'Greenhouse gases, in particular carbon dioxide and methane, played a significant role during the Eocene in controlling the surface temperature.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth history.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'While scientists knew of past climate change such as the ice ages, the concept of climate as unchanging was useful in the development of a general theory of what determines climate.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'Some long term modifications along the history of the planet have been significant, such as the incorporation of oxygen to the atmosphere.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# 或者根據與單個文本的相似度對不同文本進行排序
ranks = model.rank(
'Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.',
[
'Greenhouse gases, in particular carbon dioxide and methane, played a significant role during the Eocene in controlling the surface temperature.',
'Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record.',
'There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth history.',
'While scientists knew of past climate change such as the ice ages, the concept of climate as unchanging was useful in the development of a general theory of what determines climate.',
'Some long term modifications along the history of the planet have been significant, such as the incorporation of oxygen to the atmosphere.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 交叉編碼器 |
基礎模型 | cross-encoder/ms-marco-MiniLM-L12-v2 |
最大序列長度 | 512 個標記 |
輸出標籤數量 | 1 個標籤 |
訓練數據集 | climate-cross-encoder-mixed-neg-v3 |
模型資源
- 文檔:Sentence Transformers 文檔
- 文檔:Cross Encoder 文檔
- 代碼倉庫:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的交叉編碼器
評估
指標
交叉編碼器重排序
- 數據集:
climate-rerank-multineg
- 使用
CrossEncoderRerankingEvaluator
進行評估,參數如下:{ "at_k": 1, "always_rerank_positives": false }
指標 | 值 |
---|---|
map | 0.6809 (-0.3191) |
mrr@1 | 0.6748 (-0.3252) |
ndcg@1 | 0.6748 (-0.3252) |
訓練詳情
訓練數據集
climate-cross-encoder-mixed-neg-v3
- 數據集:climate-cross-encoder-mixed-neg-v3,版本為 cd49b57
- 大小:41,052 個訓練樣本
- 列:
query
、doc
和label
- 基於前 1000 個樣本的近似統計信息:
查詢 文檔 標籤 類型 字符串 字符串 浮點數 詳情 - 最小長度:49 個字符
- 平均長度:140.03 個字符
- 最大長度:306 個字符
- 最小長度:4 個字符
- 平均長度:136.03 個字符
- 最大長度:731 個字符
- 最小值:0.0
- 平均值:0.09
- 最大值:1.0
- 樣本:
查詢 文檔 標籤 “A leading Canadian authority on polar bears, Mitch Taylor, said: ‘We’re seeing an increase in bears that’s really unprecedented, and in places where we’re seeing a decrease in the population
Warnings about the future of the polar bear are often contrasted with the fact that worldwide population estimates have increased over the past 50 years and are relatively stable today.
1.0
“A leading Canadian authority on polar bears, Mitch Taylor, said: ‘We’re seeing an increase in bears that’s really unprecedented, and in places where we’re seeing a decrease in the population
Species distribution models of recent years indicate that the deer tick, known as "I. scapularis," is pushing its distribution to higher latitudes of the Northeastern United States and Canada, as well as pushing and maintaining populations in the South Central and Northern Midwest regions of the United States.
0.0
“A leading Canadian authority on polar bears, Mitch Taylor, said: ‘We’re seeing an increase in bears that’s really unprecedented, and in places where we’re seeing a decrease in the population
Bear and deer are among the animals present.
0.0
- 損失函數:
BinaryCrossEntropyLoss
,參數如下:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
評估數據集
climate-cross-encoder-mixed-neg-v3
- 數據集:climate-cross-encoder-mixed-neg-v3,版本為 cd49b57
- 大小:4,290 個評估樣本
- 列:
query
、doc
和label
- 基於前 1000 個樣本的近似統計信息:
查詢 文檔 標籤 類型 字符串 字符串 浮點數 詳情 - 最小長度:39 個字符
- 平均長度:116.67 個字符
- 最大長度:240 個字符
- 最小長度:18 個字符
- 平均長度:132.92 個字符
- 最大長度:731 個字符
- 最小值:0.0
- 平均值:0.09
- 最大值:1.0
- 樣本:
查詢 文檔 標籤 Scientific analysis of past climates shows that greenhouse gasses, principally CO2, have controlled most ancient climate changes.
Greenhouse gases, in particular carbon dioxide and methane, played a significant role during the Eocene in controlling the surface temperature.
1.0
Scientific analysis of past climates shows that greenhouse gasses, principally CO2, have controlled most ancient climate changes.
Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record.
0.0
Scientific analysis of past climates shows that greenhouse gasses, principally CO2, have controlled most ancient climate changes.
There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth history.
0.0
- 損失函數:
BinaryCrossEntropyLoss
,參數如下:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
訓練超參數
非默認超參數
eval_strategy
:stepsper_device_train_batch_size
:16per_device_eval_batch_size
:32learning_rate
:2e-05warmup_ratio
:0.1fp16
:Trueload_best_model_at_end
:True
所有超參數
點擊展開
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:stepsprediction_loss_only
:Trueper_device_train_batch_size
:16per_device_eval_batch_size
:32per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:1eval_accumulation_steps
:Nonetorch_empty_cache_steps
:Nonelearning_rate
:2e-05weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1.0num_train_epochs
:3max_steps
:-1lr_scheduler_type
:linearlr_scheduler_kwargs
:{}warmup_ratio
:0.1warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Falsefp16
:Truefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:0dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Trueignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
:0fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torchoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Nonehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseinclude_for_metrics
:[]eval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseeval_on_start
:Falseuse_liger_kernel
:Falseeval_use_gather_object
:Falseaverage_tokens_across_devices
:Falseprompts
:Nonebatch_sampler
:batch_samplermulti_dataset_batch_sampler
:proportional
訓練日誌
輪次 | 步數 | 訓練損失 | 驗證損失 | climate-rerank-multineg_ndcg@1 |
---|---|---|---|---|
0.0390 | 100 | 0.5097 | - | - |
0.0779 | 200 | 0.3662 | - | - |
0.1169 | 300 | 0.3034 | - | - |
0.1559 | 400 | 0.2655 | - | - |
0.1949 | 500 | 0.2651 | 0.2262 | 0.6585 (-0.3415) |
0.2338 | 600 | 0.2161 | - | - |
0.2728 | 700 | 0.227 | - | - |
0.3118 | 800 | 0.235 | - | - |
0.3507 | 900 | 0.2243 | - | - |
0.3897 | 1000 | 0.2081 | 0.2174 | 0.6992 (-0.3008) |
0.4287 | 1100 | 0.1961 | - | - |
0.4677 | 1200 | 0.207 | - | - |
0.5066 | 1300 | 0.2375 | - | - |
0.5456 | 1400 | 0.2117 | - | - |
0.5846 | 1500 | 0.2058 | 0.2253 | 0.6748 (-0.3252) |
0.6235 | 1600 | 0.2163 | - | - |
0.6625 | 1700 | 0.2235 | - | - |
0.7015 | 1800 | 0.2193 | - | - |
0.7405 | 1900 | 0.1924 | - | - |
0.7794 | 2000 | 0.2084 | 0.2095 | 0.6748 (-0.3252) |
0.8184 | 2100 | 0.2113 | - | - |
0.8574 | 2200 | 0.2276 | - | - |
0.8963 | 2300 | 0.2071 | - | - |
0.9353 | 2400 | 0.2374 | - | - |
0.9743 | 2500 | 0.2173 | 0.2172 | 0.6667 (-0.3333) |
1.0133 | 2600 | 0.2011 | - | - |
1.0522 | 2700 | 0.1634 | - | - |
1.0912 | 2800 | 0.1807 | - | - |
1.1302 | 2900 | 0.1878 | - | - |
1.1691 | 3000 | 0.2037 | 0.2147 | 0.6911 (-0.3089) |
1.2081 | 3100 | 0.1904 | - | - |
1.2471 | 3200 | 0.1911 | - | - |
1.2860 | 3300 | 0.1828 | - | - |
1.3250 | 3400 | 0.1686 | - | - |
1.3640 | 3500 | 0.1892 | 0.2179 | 0.6992 (-0.3008) |
1.4030 | 3600 | 0.188 | - | - |
1.4419 | 3700 | 0.1691 | - | - |
1.4809 | 3800 | 0.1946 | - | - |
1.5199 | 3900 | 0.1938 | - | - |
1.5588 | 4000 | 0.211 | 0.2088 | 0.6992 (-0.3008) |
1.5978 | 4100 | 0.1826 | - | - |
1.6368 | 4200 | 0.1608 | - | - |
1.6758 | 4300 | 0.1782 | - | - |
1.7147 | 4400 | 0.1803 | - | - |
1.7537 | 4500 | 0.1804 | 0.2160 | 0.6911 (-0.3089) |
1.7927 | 4600 | 0.1823 | - | - |
1.8316 | 4700 | 0.1844 | - | - |
1.8706 | 4800 | 0.1727 | - | - |
1.9096 | 4900 | 0.1937 | - | - |
1.9486 | 5000 | 0.1662 | 0.2219 | 0.6829 (-0.3171) |
1.9875 | 5100 | 0.1653 | - | - |
2.0265 | 5200 | 0.1658 | - | - |
2.0655 | 5300 | 0.1316 | - | - |
2.1044 | 5400 | 0.1379 | - | - |
2.1434 | 5500 | 0.152 | 0.2513 | 0.6504 (-0.3496) |
2.1824 | 5600 | 0.1848 | - | - |
2.2214 | 5700 | 0.1507 | - | - |
2.2603 | 5800 | 0.1495 | - | - |
2.2993 | 5900 | 0.1469 | - | - |
2.3383 | 6000 | 0.1596 | 0.2407 | 0.6585 (-0.3415) |
2.3772 | 6100 | 0.1518 | - | - |
2.4162 | 6200 | 0.1351 | - | - |
2.4552 | 6300 | 0.1706 | - | - |
2.4942 | 6400 | 0.1538 | - | - |
2.5331 | 6500 | 0.1329 | 0.2505 | 0.6911 (-0.3089) |
2.5721 | 6600 | 0.147 | - | - |
2.6111 | 6700 | 0.1289 | - | - |
2.6500 | 6800 | 0.1698 | - | - |
2.6890 | 6900 | 0.1456 | - | - |
2.7280 | 7000 | 0.141 | 0.2618 | 0.6748 (-0.3252) |
2.7670 | 7100 | 0.1413 | - | - |
2.8059 | 7200 | 0.1474 | - | - |
2.8449 | 7300 | 0.1381 | - | - |
2.8839 | 7400 | 0.1252 | - | - |
2.9228 | 7500 | 0.1384 | 0.2608 | 0.6748 (-0.3252) |
2.9618 | 7600 | 0.1826 | - | - |
- 加粗行表示保存的檢查點。
框架版本
- Python:3.11.12
- Sentence Transformers:4.1.0
- Transformers:4.51.3
- PyTorch:2.6.0+cu124
- Accelerate:1.6.0
- Datasets:3.6.0
- Tokenizers:0.21.1
📄 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98