🚀 japanese-wav2vec2-large-rs35kh
本模型是在大规模日语自动语音识别(ASR)语料库 ReazonSpeech v2.0 上对 wav2vec 2.0 Large 进行微调得到的。它能够有效提升日语语音识别的准确性和性能,为相关语音处理任务提供强大支持。
🚀 快速开始
✨ 主要特性
- 基于大规模日语 ASR 语料库微调,对日语语音识别有更好的效果。
- 可通过
transformers
库方便地调用。
📦 安装指南
文档未提及安装步骤,可参考 transformers
库的官方安装文档进行安装。
💻 使用示例
基础用法
import librosa
import numpy as np
from transformers import AutoProcessor, Wav2Vec2ForCTC
model = Wav2Vec2ForCTC.from_pretrained(
"reazon-research/japanese-wav2vec2-large-rs35kh",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
).to("cuda")
processor = AutoProcessor.from_pretrained("reazon-research/japanese-wav2vec2-large-rs35kh")
audio, _ = librosa.load(audio_filepath, sr=16_000)
audio = np.pad(audio, pad_width=int(0.5 * 16_000))
input_values = processor(
audio,
return_tensors="pt",
sampling_rate=16_000
).input_values.to("cuda").to(torch.bfloat16)
with torch.inference_mode():
logits = model(input_values).logits.cpu()
predicted_ids = torch.argmax(logits, dim=-1)[0]
transcription = processor.decode(predicted_ids, skip_special_tokens=True)
📚 详细文档
测试结果
我们报告了本模型和其他 wav2vec2 系列模型的字符错误率(CER)。
短语音测试结果
模型 |
参数数量 |
平均 CER |
JSUT - BASIC5000 CER |
Common Voice CER |
TEDxJP - 10K CER |
reazon - research/japanese - wav2vec2 - large - rs35kh |
319M |
16.25% |
11.00% |
18.23% |
19.53% |
reazon - research/japanese - wav2vec2 - base - rs35kh |
96.7M |
20.40% |
13.22% |
23.76% |
24.23% |
Ivydata/wav2vec2 - large - xlsr - 53 - japanese |
318M |
24.23% |
13.83% |
18.15% |
40.72% |
jonatasgrosman/wav2vec2 - large - xlsr - 53 - japanese |
317M |
31.82% |
4.25% |
40.58% |
50.63% |
vumichien/wav2vec2 - large - xlsr - japanese |
318M |
39.87% |
4.21% |
53.29% |
62.12% |
长语音测试结果
模型 |
参数数量 |
JSUT - BOOK CER |
reazon - research/japanese - wav2vec2 - large - rs35kh |
319M |
30.98% |
reazon - research/japanese - wav2vec2 - base - rs35kh |
96.7M |
82.84% |
Ivydata/wav2vec2 - large - xlsr - 53 - japanese |
318M |
65.60% |
jonatasgrosman/wav2vec2 - large - xlsr - 53 - japanese |
317M |
46.20% |
vumichien/wav2vec2 - large - xlsr - japanese |
318M |
46.52% |
🔧 技术细节
本模型基于 wav2vec 2.0 Large 进行微调,使用了大规模的日语 ASR 语料库 ReazonSpeech v2.0。在微调过程中,通过优化模型参数,使其能够更好地适应日语语音的特点,从而提高语音识别的准确性。
📄 许可证
本模型采用 Apaceh Licence 2.0 许可证。
引用信息
@misc{reazon-research-japanese-wav2vec2-large-rs35kh,
title={japanese-wav2vec2-large-rs35kh},
author={Sasaki, Yuta},
url = {https://huggingface.co/reazon-research/japanese-wav2vec2-large-rs35kh},
year = {2024}
}