🚀 SciPhi-Mistral-7B-32k模型卡片
SciPhi-Mistral-7B-32k是一个基于Mistral-7B-v0.1微调的大语言模型(LLM)。该模型使用超过10亿个标记进行了四个周期的微调,这些标记包括常规的指令调优数据和合成教科书。这项工作的目标是提高模型的科学推理和教育能力。为获得最佳效果,请遵循Alpaca提示指南。
SciPhi-AI可通过免费的托管API使用,不过暴露的模型可能会有所不同。目前,可使用SciPhi-Self-RAG-Mistral-7B-32k。更多详细信息可在文档中找到。
✨ 主要特性
- 模型架构:基于Mistral-7B-v0.1,具有Transformer架构、分组查询注意力、滑动窗口注意力和字节回退BPE分词器等特性。
- 微调优化:使用超过10亿个标记进行四个周期的微调,提升科学推理和教育能力。
- API支持:可通过免费的托管API使用。
📦 安装指南
文档未提及安装步骤,跳过该章节。
💻 使用示例
基础用法
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
print("### System:")
print("You are a friendly chatbot who always responds in the style of a pirate")
print("### Instruction:")
print("How many helicopters can a human eat in one sitting?")
print("### Response:")
print("...")
📚 详细文档
模型架构
属性 |
详情 |
基础模型 |
Mistral-7B-v0.1 |
架构特性 |
基于Transformer的模型、分组查询注意力、滑动窗口注意力、字节回退BPE分词器 |
推荐的聊天格式
我们推荐将以下格式:
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
转换为:
### System:
You are a friendly chatbot who always responds in the style of a pirate
### Instruction:
How many helicopters can a human eat in one sitting?
### Response:
...

参考文献
- Lian, W., Goodson, B., Wang, G., Pentland, E., Cook, A., Vong, C., & Teknium. (2023). MistralOrca: Mistral-7B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset. HuggingFace repository. 链接
- Mukherjee, S., Mitra, A., Jawahar, G., Agarwal, S., Palangi, H., & Awadallah, A. (2023). Orca: Progressive Learning from Complex Explanation Traces of GPT-4. arXiv预印本 arXiv:2306.02707.
- Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W., Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., & Roberts, A. (2023). The Flan Collection: Designing Data and Methods for Effective Instruction Tuning. arXiv预印本 arXiv:2301.13688.
- Mistral AI. (2023). Model Card for Mistral-7B-v0.1. The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks tested. For full details, please refer to the paper and release blog post. Model Architecture: Transformer with Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. 链接
致谢
感谢AI Alignment Lab、vikp、jph00以及其他为这项工作做出贡献的人。
📄 许可证
本项目采用MIT许可证。