🚀 SciPhi-Mistral-7B-32k模型卡片
SciPhi-Mistral-7B-32k是一個基於Mistral-7B-v0.1微調的大語言模型(LLM)。該模型使用超過10億個標記進行了四個週期的微調,這些標記包括常規的指令調優數據和合成教科書。這項工作的目標是提高模型的科學推理和教育能力。為獲得最佳效果,請遵循Alpaca提示指南。
SciPhi-AI可通過免費的託管API使用,不過暴露的模型可能會有所不同。目前,可使用SciPhi-Self-RAG-Mistral-7B-32k。更多詳細信息可在文檔中找到。
✨ 主要特性
- 模型架構:基於Mistral-7B-v0.1,具有Transformer架構、分組查詢注意力、滑動窗口注意力和字節回退BPE分詞器等特性。
- 微調優化:使用超過10億個標記進行四個週期的微調,提升科學推理和教育能力。
- API支持:可通過免費的託管API使用。
📦 安裝指南
文檔未提及安裝步驟,跳過該章節。
💻 使用示例
基礎用法
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
print("### System:")
print("You are a friendly chatbot who always responds in the style of a pirate")
print("### Instruction:")
print("How many helicopters can a human eat in one sitting?")
print("### Response:")
print("...")
📚 詳細文檔
模型架構
屬性 |
詳情 |
基礎模型 |
Mistral-7B-v0.1 |
架構特性 |
基於Transformer的模型、分組查詢注意力、滑動窗口注意力、字節回退BPE分詞器 |
推薦的聊天格式
我們推薦將以下格式:
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
轉換為:
### System:
You are a friendly chatbot who always responds in the style of a pirate
### Instruction:
How many helicopters can a human eat in one sitting?
### Response:
...

參考文獻
- Lian, W., Goodson, B., Wang, G., Pentland, E., Cook, A., Vong, C., & Teknium. (2023). MistralOrca: Mistral-7B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset. HuggingFace repository. 鏈接
- Mukherjee, S., Mitra, A., Jawahar, G., Agarwal, S., Palangi, H., & Awadallah, A. (2023). Orca: Progressive Learning from Complex Explanation Traces of GPT-4. arXiv預印本 arXiv:2306.02707.
- Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W., Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., & Roberts, A. (2023). The Flan Collection: Designing Data and Methods for Effective Instruction Tuning. arXiv預印本 arXiv:2301.13688.
- Mistral AI. (2023). Model Card for Mistral-7B-v0.1. The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks tested. For full details, please refer to the paper and release blog post. Model Architecture: Transformer with Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. 鏈接
致謝
感謝AI Alignment Lab、vikp、jph00以及其他為這項工作做出貢獻的人。
📄 許可證
本項目採用MIT許可證。