Cnmoro TinyLlama ContextQuestionPair Classifier Reranker Gguf
模型简介
该模型通过对上下文和问题对进行分类和重排,优化信息检索和问答系统的相关性排序。
模型特点
轻量级量化
提供多种量化版本,最小仅0.4GB,适合资源受限环境
上下文-问题对处理
专门优化用于分析上下文与问题对的相关性
多量化选项
提供从Q2_K到Q8_0共21种不同量化级别的模型选择
模型能力
文本相关性评分
问答对排序
上下文理解
信息检索优化
使用案例
问答系统
FAQ排序
对候选答案进行相关性排序,提升问答系统准确率
推断可提高答案选择准确率
信息检索
文档段落排序
根据查询问题对检索到的文档段落进行重排
推断可提高检索结果相关性
🚀 TinyLlama-ContextQuestionPair-Classifier-Reranker - GGUF
本项目提供了TinyLlama-ContextQuestionPair-Classifier-Reranker模型的量化版本(GGUF格式),可用于文本排序任务。该模型由Richard Erkhov进行量化处理,原始模型由https://huggingface.co/cnmoro/ 创建。
项目链接
✨ 主要特性
- 多语言支持:支持英语(en)和葡萄牙语(pt)。
- 分类与重排序:适用于分类和重排序任务,特别是在RAG(检索增强生成)场景中。
📦 模型信息
属性 | 详情 |
---|---|
模型类型 | TinyLlama-ContextQuestionPair-Classifier-Reranker - GGUF |
模型创建者 | https://huggingface.co/cnmoro/ |
原始模型 | https://huggingface.co/cnmoro/TinyLlama-ContextQuestionPair-Classifier-Reranker/ |
许可证 | cc-by-nc-2.0 |
支持语言 | 英语(en)、葡萄牙语(pt) |
标签 | classification, llama, tinyllama, rag, rerank |
量化模型列表
💻 使用示例
基础用法
template = """<s><|system|>
You are a chatbot who always responds in JSON format indicating if the context contains relevant information to answer the question</s>
<|user|>
Context:
{Text}
Question:
{Prompt}</s>
<|assistant|>
"""
# Output should be:
{"relevant": true}
# or
{"relevant": false}
示例输入输出
<s><|system|>
You are a chatbot who always responds in JSON format indicating if the context contains relevant information to answer the question</s>
<|user|>
Context:
old. NFT were observed in almost all patients over 60 years of age, but the incidence was low.
Many ubiquitin-positive small-sized granules were observed in the second and third layer of the parahippocampal gyrus of aged patients,
and the incidence rose with increasing age. On the other hand, few of these granules were in patients with Alzheimer\'s type dementia.
Granulovacuolar degeneration was examined. Many centrally-located granules were positive for ubiquitin. Based on electron microscopic
observation of these granules at several stages, the granules were thought to be a type of autophagosome. During the first stage of
granulovacuolar degeneration, electron-dense materials appeared in the cytoplasm, following which they were surrounded by smooth cytoplasm,
following which they were surrounded by smooth endoplasmic reticulum. Analytical electron microscopy disclosed that the granules contained
some aluminium. Several senile changes in the central nervous system in cadavers were examined. The pattern of extension of Alzheimer\'s
neurofibrillary tangles (NFT) and senile plaques (SP) in the olfactory bulbs of 100 specimens was examined during routine autopsy by
immunohistochemical staining. NFT were first observed in the anterior olfactory nucleus after the age of 60, and incidence rose with
increasing age. Senile plaques were found in the nucleus when there were many SP in the cerebral cortex. Of 25 non-demented amyotrophic
lateral sclerosis patients, SP were found in the cerebral cortices of 10, and 9 of 10 were over 60 years old. NFT were observed in almost
all patients over
Question:
What is granulovacuolar degeneration and what was its observation on electron microscopy?</s>
<|assistant|>
{"relevant": true}</s>
vLLM推荐请求参数
prompt = "<s><|system|>\nYou are a chatbot who always responds in JSON format indicating if the context contains relevant information to answer the question</s>\n<|user|>\nContext:\nConhecida como missão de imagem de raios-x e espectroscopia (da sigla em inglês XRISM), a estratégia é utilizar o telescópio para ampliar os estudos da humanidade a níveis celestiais com uma fração dos pixels da tela de um Gameboy original, lançado em 1989. Isso é possível por meio de uma ferramenta chamada “Resolve”. Apesar de utilizar a medição em pixels, a tecnologia é bastante diferente de uma câmera. Com um conjunto de microcalorímetros de seis pixels quadrados que mede 0,5 cm², ela detecta a temperatura de cada raio-x que o atinge. Como funciona o Resolve do telescópio XRISM? Cientista do projeto XRISM da NASA, Brian Williams explicou em um comunicado o funcionamento do telescópio. “Chamamos o Resolve de espectrômetro de microcalorímetros porque cada um de seus 36 pixels está medindo pequenas quantidades de calor entregues por cada raio-x recebido, nos permitindo ver as impressões digitais químicas dos elementos que compõem as fontes com detalhes sem precedentes”.\n\nQuestion:\nQual é a sigla em alemão mencionada?</s>\n<|assistant|>\n{\"relevant\":"
headers = {
"Accept": "text/event-stream",
"Authorization": "Bearer EMPTY"
}
body = {
"model": model,
"prompt": [prompt],
"best_of": 5,
"max_tokens": 1,
"temperature": 0,
"top_p": 1,
"use_beam_search": True,
"top_k": -1,
"min_p": 0,
"repetition_penalty": 1,
"length_penalty": 1,
"min_tokens": 1,
"logprobs": 1
}
result = requests.post(base_uri, headers=headers, json=body)
result = result.json()
boolean_response = bool(eval(json_result['choices'][0]['text'].strip().title()))
print(boolean_response)
📄 许可证
本项目原始模型采用 cc-by-nc-2.0
许可证。
Distilbert Base Uncased Finetuned Sst 2 English
Apache-2.0
基于DistilBERT-base-uncased在SST-2情感分析数据集上微调的文本分类模型,准确率91.3%
文本分类 英语
D
distilbert
5.2M
746
Xlm Roberta Base Language Detection
MIT
基于XLM-RoBERTa的多语言检测模型,支持20种语言的文本分类
文本分类
Transformers 支持多种语言

X
papluca
2.7M
333
Roberta Hate Speech Dynabench R4 Target
该模型通过动态生成数据集来改进在线仇恨检测,专注于从最差案例中学习以提高检测效果。
文本分类
Transformers 英语

R
facebook
2.0M
80
Bert Base Multilingual Uncased Sentiment
MIT
基于bert-base-multilingual-uncased微调的多语言情感分析模型,支持6种语言的商品评论情感分析
文本分类 支持多种语言
B
nlptown
1.8M
371
Emotion English Distilroberta Base
基于DistilRoBERTa-base微调的英文文本情感分类模型,可预测埃克曼六种基本情绪及中性类别。
文本分类
Transformers 英语

E
j-hartmann
1.1M
402
Robertuito Sentiment Analysis
基于RoBERTuito的西班牙语推文情感分析模型,支持POS(积极)/NEG(消极)/NEU(中性)三类情感分类
文本分类 西班牙语
R
pysentimiento
1.0M
88
Finbert Tone
FinBERT是一款基于金融通讯文本预训练的BERT模型,专注于金融自然语言处理领域。finbert-tone是其微调版本,用于金融情感分析任务。
文本分类
Transformers 英语

F
yiyanghkust
998.46k
178
Roberta Base Go Emotions
MIT
基于RoBERTa-base的多标签情感分类模型,在go_emotions数据集上训练,支持28种情感标签识别。
文本分类
Transformers 英语

R
SamLowe
848.12k
565
Xlm Emo T
XLM-EMO是一个基于XLM-T模型微调的多语言情感分析模型,支持19种语言,专门针对社交媒体文本的情感预测。
文本分类
Transformers 其他

X
MilaNLProc
692.30k
7
Deberta V3 Base Mnli Fever Anli
MIT
基于MultiNLI、Fever-NLI和ANLI数据集训练的DeBERTa-v3模型,擅长零样本分类和自然语言推理任务
文本分类
Transformers 英语

D
MoritzLaurer
613.93k
204
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98