🚀 土耳其无大小写区分基础BERT模型用于平均NLI和STSB任务(土耳其语)
这是一个句子转换器模型,它能将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。
该模型改编自ytu-ce-cosmos/turkish-base-bert-uncased,并在以下数据集上进行了微调:
⚠️ 重要提示
如模型作者所述,所有文本都需手动转换为小写:
text.replace("I", "ı").lower()
🚀 快速开始
📦 安装指南
若要使用此模型,需先安装sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基础用法(使用Sentence-Transformers库)
from sentence_transformers import SentenceTransformer
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
model = SentenceTransformer('atasoglu/turkish-base-bert-uncased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(使用HuggingFace Transformers库)
不使用sentence-transformers时,可按以下步骤使用该模型:首先将输入传递给Transformer模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-base-bert-uncased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('atasoglu/turkish-base-bert-uncased-mean-nli-stsb-tr')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
在STS-b测试集上取得的结果如下:
Cosine-Similarity : Pearson: 0.8401 Spearman: 0.8410
Manhattan-Distance: Pearson: 0.8256 Spearman: 0.8261
Euclidean-Distance: Pearson: 0.8261 Spearman: 0.8268
Dot-Product-Similarity: Pearson: 0.7823 Spearman: 0.7723
训练参数
该模型的训练参数如下:
数据加载器
torch.utils.data.dataloader.DataLoader
,长度为90,参数如下:
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()
方法的参数:
{
"epochs": 4,
"evaluation_steps": 9,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 36,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 许可证
本项目采用MIT许可证。
属性 |
详情 |
模型类型 |
句子转换器模型 |
训练数据 |
nli_tr、emrecan/stsb-mt-turkish |
基础模型 |
ytu-ce-cosmos/turkish-base-bert-uncased |
库名称 |
sentence-transformers |
许可证 |
MIT |