🚀 土耳其無大小寫區分基礎BERT模型用於平均NLI和STSB任務(土耳其語)
這是一個句子轉換器模型,它能將句子和段落映射到768維的密集向量空間,可用於聚類或語義搜索等任務。
該模型改編自ytu-ce-cosmos/turkish-base-bert-uncased,並在以下數據集上進行了微調:
⚠️ 重要提示
如模型作者所述,所有文本都需手動轉換為小寫:
text.replace("I", "ı").lower()
🚀 快速開始
📦 安裝指南
若要使用此模型,需先安裝sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法(使用Sentence-Transformers庫)
from sentence_transformers import SentenceTransformer
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
model = SentenceTransformer('atasoglu/turkish-base-bert-uncased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(使用HuggingFace Transformers庫)
不使用sentence-transformers時,可按以下步驟使用該模型:首先將輸入傳遞給Transformer模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-base-bert-uncased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('atasoglu/turkish-base-bert-uncased-mean-nli-stsb-tr')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
在STS-b測試集上取得的結果如下:
Cosine-Similarity : Pearson: 0.8401 Spearman: 0.8410
Manhattan-Distance: Pearson: 0.8256 Spearman: 0.8261
Euclidean-Distance: Pearson: 0.8261 Spearman: 0.8268
Dot-Product-Similarity: Pearson: 0.7823 Spearman: 0.7723
訓練參數
該模型的訓練參數如下:
數據加載器
torch.utils.data.dataloader.DataLoader
,長度為90,參數如下:
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()
方法的參數:
{
"epochs": 4,
"evaluation_steps": 9,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 36,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 許可證
本項目採用MIT許可證。
屬性 |
詳情 |
模型類型 |
句子轉換器模型 |
訓練數據 |
nli_tr、emrecan/stsb-mt-turkish |
基礎模型 |
ytu-ce-cosmos/turkish-base-bert-uncased |
庫名稱 |
sentence-transformers |
許可證 |
MIT |