Bmretriever 410M
模型简介
该模型基于EMNLP 2024论文提出的方法,专门用于生物医学领域的文本检索任务,能够高效检索支持或反驳特定科学论断的文献
模型特点
生物医学领域优化
专门针对生物医学文本进行微调,在医学和生物学领域检索任务中表现优异
指令感知检索
支持通过任务描述指令来指导检索过程,提高检索结果的相关性
高效嵌入表示
采用最后token池化策略生成紧凑的嵌入表示,便于计算相似度
模型能力
生物医学文本检索
科学文献相关性判断
嵌入向量生成
文本相似度计算
使用案例
医学研究
医学论断验证
检索支持或反驳特定医学论断的文献证据
可准确找到相关医学文献支持或反驳特定论断
生物医学信息检索
科学文献检索
从大量生物医学文献中检索与特定查询相关的文档
在PubMed等生物医学数据集上表现优异
🚀 BMRetriever-410M 模型
该模型是基于论文 BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers(发表于 EMNLP 2024)中描述的方法进行微调的。相关的 GitHub 仓库可在 此处 查看。此模型具有 4.1 亿个参数,更多详细信息请参阅论文 链接。
📄 许可证
本项目采用 MIT 许可证。
📦 训练数据集
- MedRAG/textbooks
- MedRAG/pubmed
- MedRAG/statpearls
- mteb/raw_biorxiv
- mteb/raw_medrxiv
- ms_marco
- BMRetriever/biomed_retrieval_dataset
🚀 快速开始
预训练模型可以通过 HuggingFace 的 transformers 库进行加载。
💻 使用示例
基础用法
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("BMRetriever/BMRetriever-410M")
tokenizer = AutoTokenizer.from_pretrained("BMRetriever/BMRetriever-410M")
高级用法
以下代码展示了如何获取不同句子的嵌入向量以及计算句子之间的相似度得分:
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def last_token_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
embedding = last_hidden[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden.shape[0]
embedding = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
return embedding
def get_detailed_instruct_query(task_description: str, query: str) -> str:
return f'{task_description}\nQuery: {query}'
def get_detailed_instruct_passage(passage: str) -> str:
return f'Represent this passage\npassage: {passage}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a scientific claim, retrieve documents that support or refute the claim'
queries = [
get_detailed_instruct_query(task, 'Cis-acting lncRNAs control the expression of genes that are positioned in the vicinity of their transcription sites.'),
get_detailed_instruct_query(task, 'Forkhead 0 (fox0) transcription factors are involved in apoptosis.')
]
# No need to add instruction for retrieval documents
documents = [
get_detailed_instruct_passage("Gene regulation by the act of long non-coding RNA transcription Long non-protein-coding RNAs (lncRNAs) are proposed to be the largest transcript class in the mouse and human transcriptomes. Two important questions are whether all lncRNAs are functional and how they could exert a function. Several lncRNAs have been shown to function through their product, but this is not the only possible mode of action. In this review we focus on a role for the process of lncRNA transcription, independent of the lncRNA product, in regulating protein-coding-gene activity in cis. We discuss examples where lncRNA transcription leads to gene silencing or activation, and describe strategies to determine if the lncRNA product or its transcription causes the regulatory effect."),
get_detailed_instruct_passage("Noncoding transcription at enhancers: general principles and functional models. Mammalian genomes are extensively transcribed outside the borders of protein-coding genes. Genome-wide studies recently demonstrated that cis-regulatory genomic elements implicated in transcriptional control, such as enhancers and locus-control regions, represent major sites of extragenic noncoding transcription. Enhancer-templated transcripts provide a quantitatively small contribution to the total amount of cellular nonribosomal RNA; nevertheless, the possibility that enhancer transcription and the resulting enhancer RNAs may, in some cases, have functional roles, rather than represent mere transcriptional noise at accessible genomic regions, is supported by an increasing amount of experimental data. In this article we review the current knowledge on enhancer transcription and its functional implications.")
]
input_texts = queries + documents
max_length = 512
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=max_length-1, padding=True, truncation=True, return_tensors='pt')
# Important! Adding EOS token at the end
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt').to("cuda")
model.eval()
with torch.no_grad():
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
📚 引用
如果您觉得这个仓库有帮助,请考虑引用相应的论文,谢谢!
@inproceedings{xu2024bmretriever,
title={BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers},
author={Ran Xu and Wenqi Shi and Yue Yu and Yuchen Zhuang and Yanqiao Zhu and May D. Wang and Joyce C. Ho and Chao Zhang and Carl Yang},
year={2024},
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing},
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98