模型简介
模型特点
模型能力
使用案例
🚀 文档理解模型(在DocLayNet基础数据集上按行级别微调的LayoutXLM基础模型)
该模型是一个文档理解模型,基于microsoft/layoutxlm-base,使用DocLayNet base数据集进行微调。它在文档布局分析和理解方面表现出色,能为各类文档提供准确的结构识别和内容分类。
🚀 快速开始
本模型可用于文档理解任务,特别是在文档布局分析和行级别的文本分类方面。你可以通过以下资源快速上手:
- 推理:参考笔记本 Document AI | Inference at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)。
- 训练和评估:参考笔记本 Document AI | Fine-tune LayoutXLM base on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)。
✨ 主要特性
- 多语言支持:支持多种语言,适用于不同语言环境下的文档理解。
- 高精度:在评估集上取得了良好的指标,如F1值达到0.7336,准确率达到0.9373。
- 行级处理:模型在384个标记的块上按行级别进行微调,能够对每行文本进行准确分类。
📚 详细文档
模型描述
该模型在384个标记的块上按行级别进行微调,重叠128个标记。因此,模型使用了数据集中所有页面的布局和文本数据进行训练。在推理时,通过计算最佳概率为每个行边界框分配标签。
推理
你可以参考以下笔记本进行推理:Document AI | Inference at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)。
训练和评估数据
关于训练和评估数据的详细信息,请参考笔记本:Document AI | Fine-tune LayoutXLM base on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)。
训练过程
训练超参数
训练过程中使用了以下超参数:
属性 | 详情 |
---|---|
学习率 | 2e-05 |
训练批次大小 | 8 |
评估批次大小 | 16 |
随机种子 | 42 |
优化器 | Adam(betas=(0.9, 0.999),epsilon=1e-08) |
学习率调度器类型 | 线性 |
学习率调度器热身比例 | 0.1 |
训练轮数 | 3 |
混合精度训练 | 原生AMP |
训练结果
训练损失 | 轮数 | 步数 | 准确率 | F1值 | 验证损失 | 精确率 | 召回率 |
---|---|---|---|---|---|---|---|
No log | 0.12 | 300 | 0.8413 | 0.1311 | 0.5185 | 0.1437 | 0.1205 |
0.9231 | 0.25 | 600 | 0.8751 | 0.5031 | 0.4108 | 0.4637 | 0.5498 |
0.9231 | 0.37 | 900 | 0.8887 | 0.5206 | 0.3911 | 0.5076 | 0.5343 |
0.369 | 0.5 | 1200 | 0.8724 | 0.5365 | 0.4118 | 0.5094 | 0.5667 |
0.2737 | 0.62 | 1500 | 0.8960 | 0.6033 | 0.3328 | 0.6046 | 0.6020 |
0.2737 | 0.75 | 1800 | 0.9186 | 0.6404 | 0.2984 | 0.6062 | 0.6787 |
0.2542 | 0.87 | 2100 | 0.9163 | 0.6593 | 0.3115 | 0.6324 | 0.6887 |
0.2542 | 1.0 | 2400 | 0.9198 | 0.6537 | 0.2878 | 0.6160 | 0.6962 |
0.1938 | 1.12 | 2700 | 0.9165 | 0.6752 | 0.3414 | 0.6673 | 0.6833 |
0.1581 | 1.25 | 3000 | 0.9193 | 0.6871 | 0.3611 | 0.6868 | 0.6875 |
0.1581 | 1.37 | 3300 | 0.9256 | 0.6822 | 0.2763 | 0.6988 | 0.6663 |
0.1428 | 1.5 | 3600 | 0.9287 | 0.7084 | 0.3065 | 0.7246 | 0.6929 |
0.1428 | 1.62 | 3900 | 0.9194 | 0.6812 | 0.2942 | 0.6866 | 0.6760 |
0.1025 | 1.74 | 4200 | 0.9347 | 0.7223 | 0.2990 | 0.7315 | 0.7133 |
0.1225 | 1.87 | 4500 | 0.9360 | 0.7048 | 0.2729 | 0.7249 | 0.6858 |
0.1225 | 1.99 | 4800 | 0.9396 | 0.7222 | 0.2826 | 0.7497 | 0.6966 |
0.108 | 2.12 | 5100 | 0.9301 | 0.7193 | 0.3071 | 0.7022 | 0.7372 |
0.108 | 2.24 | 5400 | 0.9334 | 0.7243 | 0.2999 | 0.7250 | 0.7237 |
0.0799 | 2.37 | 5700 | 0.9382 | 0.7254 | 0.2710 | 0.7310 | 0.7198 |
0.0793 | 2.49 | 6000 | 0.9329 | 0.7228 | 0.3201 | 0.7352 | 0.7108 |
0.0793 | 2.62 | 6300 | 0.9373 | 0.7336 | 0.3035 | 0.7260 | 0.7415 |
0.0696 | 2.74 | 6600 | 0.9374 | 0.7275 | 0.3137 | 0.7313 | 0.7237 |
0.0696 | 2.87 | 6900 | 0.9381 | 0.7253 | 0.3242 | 0.7369 | 0.7142 |
0.0866 | 2.99 | 7200 | 0.2473 | 0.7439 | 0.7207 | 0.7321 | 0.9407 |
框架版本
- Transformers 4.26.1
- Pytorch 1.10.0+cu111
- Datasets 2.10.1
- Tokenizers 0.13.2
参考资料
博客文章
- Layout XLM base
- LiLT base
- (02/16/2023) Document AI | Inference APP and fine-tuning notebook for Document Understanding at paragraph level
- (02/14/2023) Document AI | Inference APP for Document Understanding at line level
- (02/10/2023) Document AI | Document Understanding model at line level with LiLT, Tesseract and DocLayNet dataset
- (01/31/2023) Document AI | DocLayNet image viewer APP
- (01/27/2023) Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)
笔记本(段落级别)
- LiLT base
- Document AI | Inference APP at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)
- Document AI | Inference at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)
- Document AI | Fine-tune LiLT on DocLayNet base in any language at paragraph level (chunk of 512 tokens with overlap)
笔记本(行级别)
- Layout XLM base
- Document AI | Inference at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)
- Document AI | Inference APP at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet base dataset)
- Document AI | Fine-tune LayoutXLM base on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)
- LiLT base
- Document AI | Inference at line level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)
- Document AI | Inference APP at line level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)
- Document AI | Fine-tune LiLT on DocLayNet base in any language at line level (chunk of 384 tokens with overlap)
- DocLayNet image viewer APP
- Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)
APP
你可以使用Hugging Face Spaces中的这个应用程序测试该模型:Inference APP for Document Understanding at line level (v2)。
DocLayNet数据集
DocLayNet数据集(IBM)为来自6个文档类别的80863个唯一页面上的11个不同类别标签提供了逐页布局分割的真实标注,使用了边界框。到目前为止,该数据集可以通过直接链接或从Hugging Face数据集下载:
- 直接链接:doclaynet_core.zip(28 GiB),doclaynet_extra.zip(7.5 GiB)
- Hugging Face数据集库:dataset DocLayNet
论文:DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis(06/02/2022)
其他模型
- 行级别
- Document Understanding model (finetuned LiLT base at line level on DocLayNet base)(准确率 | 标记:85.84% - 行:91.97%)
- Document Understanding model (finetuned LayoutXLM base at line level on DocLayNet base)(准确率 | 标记:93.73% - 行:...)
- 段落级别
- Document Understanding model (finetuned LiLT base at paragraph level on DocLayNet base)(准确率 | 标记:86.34% - 段落:68.15%)
- Document Understanding model (finetuned LayoutXLM base at paragraph level on DocLayNet base)(准确率 | 标记:96.93% - 段落:86.55%)
📄 许可证
本模型采用MIT许可证。










