Bge Reranker V2 M3 Ko
B
Bge Reranker V2 M3 Ko
由 dragonkue 开发
这是一个基于BAAI/bge-reranker-v2-m3优化的韩语重排序模型,主要用于文本排序任务。
下载量 877
发布时间 : 10/16/2024
模型简介
该模型是一个交叉编码器,直接以问题和文档作为输入,输出相似度分数。通过输入查询和段落,模型会返回相关性分数,适用于信息检索和文档排序任务。
模型特点
多语言支持
支持韩语和英语,特别针对韩语进行了优化。
高精度重排序
直接计算文本对的相似度,精度高于双编码器模型。
多种使用方式
支持通过Transformers、SentenceTransformers和FlagEmbedding库使用。
模型能力
文本相似度计算
文档重排序
信息检索
使用案例
信息检索
金融领域文档检索
用于检索与金融相关的韩语文档,如法律条文、政策文件等。
在韩语金融领域基准测试中,Top-1 F1得分为0.9123。
问答系统
问题与答案匹配
用于计算问题与候选答案的相关性,选择最匹配的答案。
🚀 重排器(交叉编码器)
与嵌入模型不同,重排器以问题和文档作为输入,直接输出相似度,而非嵌入向量。你可以通过向重排器输入查询和段落来获得相关性得分。该得分可以通过 sigmoid 函数映射到 [0,1] 范围内的浮点值。
🚀 快速开始
模型详情
属性 | 详情 |
---|---|
基础模型 | BAAI/bge-reranker-v2-m3 |
模型特性 | 该多语言模型已针对韩语进行了优化 |
使用 Transformers 库
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('dragonkue/bge-reranker-v2-m3-ko')
tokenizer = AutoTokenizer.from_pretrained('dragonkue/bge-reranker-v2-m3-ko')
features = tokenizer([['몇 년도에 지방세외수입법이 시행됐을까?', '실무교육을 통해 ‘지방세외수입법’에 대한 자치단체의 관심을 제고하고 자치단체의 차질 없는 업무 추진을 지원하였다. 이러한 준비과정을 거쳐 2014년 8월 7일부터 ‘지방세외수입법’이 시행되었다.'],
['몇 년도에 지방세외수입법이 시행됐을까?', '식품의약품안전처는 21일 국내 제약기업 유바이오로직스가 개발 중인 신종 코로나바이러스 감염증(코로나19) 백신 후보물질 ‘유코백-19’의 임상시험 계획을 지난 20일 승인했다고 밝혔다.']], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
logits = model(**features).logits
scores = torch.sigmoid(logits)
print(scores)
# [9.9997962e-01 5.0702977e-07]
使用 SentenceTransformers 库
首先安装 Sentence Transformers 库:
pip install -U sentence-transformers
from sentence_transformers import CrossEncoder
model = CrossEncoder('dragonkue/bge-reranker-v2-m3-ko', default_activation_function=torch.nn.Sigmoid())
scores = model.predict([['몇 년도에 지방세외수입법이 시행됐을까?', '실무교육을 통해 ‘지방세외수입법’에 대한 자치단체의 관심을 제고하고 자치단체의 차질 없는 업무 추진을 지원하였다. 이러한 준비과정을 거쳐 2014년 8월 7일부터 ‘지방세외수입법’이 시행되었다.'],
['몇 년도에 지방세외수입법이 시행됐을까?', '식품의약품안전처는 21일 국내 제약기업 유바이오로직스가 개발 중인 신종 코로나바이러스 감염증(코로나19) 백신 후보물질 ‘유코백-19’의 임상시험 계획을 지난 20일 승인했다고 밝혔다.']])
print(scores)
# [9.9997962e-01 5.0702977e-07]
使用 FlagEmbedding 库
首先安装 FlagEmbedding 库:
pip install -U FlagEmbedding
from FlagEmbedding import FlagReranker
reranker = FlagReranker('dragonkue/bge-reranker-v2-m3-ko')
scores = reranker.compute_score([['몇 년도에 지방세외수입법이 시행됐을까?', '실무교육을 통해 ‘지방세외수입법’에 대한 자치단체의 관심을 제고하고 자치단체의 차질 없는 업무 추진을 지원하였다. 이러한 준비과정을 거쳐 2014년 8월 7일부터 ‘지방세외수입법’이 시행되었다.'],
['몇 년도에 지방세외수입법이 시행됐을까?', '식품의약품안전처는 21일 국내 제약기업 유바이오로직스가 개발 중인 신종 코로나바이러스 감염증(코로나19) 백신 후보물질 ‘유코백-19’의 임상시험 계획을 지난 20일 승인했다고 밝혔다.']], normalize=True)
print(scores)
# [9.9997962e-01 5.0702977e-07]
微调
请参考:https://github.com/FlagOpen/FlagEmbedding
📚 详细文档
双编码器和交叉编码器
双编码器将文本转换为固定大小的向量,并高效地计算它们之间的相似度。它们速度快,非常适合语义搜索和分类等任务,适合快速处理大型数据集。
交叉编码器直接比较文本对以计算相似度得分,提供更准确的结果。虽然由于需要处理每一对文本,它们的速度较慢,但在对顶部结果进行重新排序方面表现出色,并且在高级 RAG 技术中对于增强文本生成非常重要。
使用 AutoRAG 的韩语嵌入基准测试
(https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark)
这是一个针对金融领域的韩语嵌入基准测试。
前 1 名结果
双编码器(Sentence Transformer)
模型名称 | F1 值 | 召回率 | 精确率 |
---|---|---|---|
paraphrase-multilingual-mpnet-base-v2 | 0.3596 | 0.3596 | 0.3596 |
KoSimCSE-roberta | 0.4298 | 0.4298 | 0.4298 |
Cohere embed-multilingual-v3.0 | 0.3596 | 0.3596 | 0.3596 |
openai ada 002 | 0.4737 | 0.4737 | 0.4737 |
multilingual-e5-large-instruct | 0.4649 | 0.4649 | 0.4649 |
Upstage Embedding | 0.6579 | 0.6579 | 0.6579 |
paraphrase-multilingual-MiniLM-L12-v2 | 0.2982 | 0.2982 | 0.2982 |
openai_embed_3_small | 0.5439 | 0.5439 | 0.5439 |
ko-sroberta-multitask | 0.4211 | 0.4211 | 0.4211 |
openai_embed_3_large | 0.6053 | 0.6053 | 0.6053 |
KU-HIAI-ONTHEIT-large-v1 | 0.7105 | 0.7105 | 0.7105 |
KU-HIAI-ONTHEIT-large-v1.1 | 0.7193 | 0.7193 | 0.7193 |
kf-deberta-multitask | 0.4561 | 0.4561 | 0.4561 |
gte-multilingual-base | 0.5877 | 0.5877 | 0.5877 |
KoE5 | 0.7018 | 0.7018 | 0.7018 |
BGE-m3 | 0.6578 | 0.6578 | 0.6578 |
bge-m3-korean | 0.5351 | 0.5351 | 0.5351 |
BGE-m3-ko | 0.7456 | 0.7456 | 0.7456 |
交叉编码器(重排器)
模型名称 | F1 值 | 召回率 | 精确率 |
---|---|---|---|
gte-multilingual-reranker-base | 0.7281 | 0.7281 | 0.7281 |
jina-reranker-v2-base-multilingual | 0.8070 | 0.8070 | 0.8070 |
bge-reranker-v2-m3 | 0.8772 | 0.8772 | 0.8772 |
upskyy/ko-reranker-8k | 0.8684 | 0.8684 | 0.8684 |
upskyy/ko-reranker | 0.8333 | 0.8333 | 0.8333 |
mncai/bge-ko-reranker-560M | 0.0088 | 0.0088 | 0.0088 |
Dongjin-kr/ko-reranker | 0.8509 | 0.8509 | 0.8509 |
bge-reranker-v2-m3-ko | 0.9123 | 0.9123 | 0.9123 |
前 3 名结果
双编码器(Sentence Transformer)
模型名称 | F1 值 | 召回率 | 精确率 |
---|---|---|---|
paraphrase-multilingual-mpnet-base-v2 | 0.2368 | 0.4737 | 0.1579 |
KoSimCSE-roberta | 0.3026 | 0.6053 | 0.2018 |
Cohere embed-multilingual-v3.0 | 0.2851 | 0.5702 | 0.1901 |
openai ada 002 | 0.3553 | 0.7105 | 0.2368 |
multilingual-e5-large-instruct | 0.3333 | 0.6667 | 0.2222 |
Upstage Embedding | 0.4211 | 0.8421 | 0.2807 |
paraphrase-multilingual-MiniLM-L12-v2 | 0.2061 | 0.4123 | 0.1374 |
openai_embed_3_small | 0.3640 | 0.7281 | 0.2427 |
ko-sroberta-multitask | 0.2939 | 0.5877 | 0.1959 |
openai_embed_3_large | 0.3947 | 0.7895 | 0.2632 |
KU-HIAI-ONTHEIT-large-v1 | 0.4386 | 0.8772 | 0.2924 |
KU-HIAI-ONTHEIT-large-v1.1 | 0.4430 | 0.8860 | 0.2953 |
kf-deberta-multitask | 0.3158 | 0.6316 | 0.2105 |
gte-multilingual-base | 0.4035 | 0.8070 | 0.2690 |
KoE5 | 0.4254 | 0.8509 | 0.2836 |
BGE-m3 | 0.4254 | 0.8508 | 0.2836 |
bge-m3-korean | 0.3684 | 0.7368 | 0.2456 |
BGE-m3-ko | 0.4517 | 0.9035 | 0.3011 |
交叉编码器(重排器)
模型名称 | F1 值 | 召回率 | 精确率 |
---|---|---|---|
gte-multilingual-reranker-base | 0.4605 | 0.9211 | 0.3070 |
jina-reranker-v2-base-multilingual | 0.4649 | 0.9298 | 0.3099 |
bge-reranker-v2-m3 | 0.4781 | 0.9561 | 0.3187 |
upskyy/ko-reranker-8k | 0.4781 | 0.9561 | 0.3187 |
upskyy/ko-reranker | 0.4649 | 0.9298 | 0.3099 |
mncai/bge-ko-reranker-560M | 0.0044 | 0.0088 | 0.0029 |
Dongjin-kr/ko-reranker | 0.4737 | 0.9474 | 0.3158 |
bge-reranker-v2-m3-ko | 0.4825 | 0.9649 | 0.3216 |
📄 许可证
本项目采用 Apache-2.0 许可证。
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98