🚀 CAMeLBERT MSA情感分析模型
CAMeLBERT MSA情感分析模型 是一个情感分析(SA)模型,它通过微调 CAMeLBERT现代标准阿拉伯语(MSA) 模型构建而成。在微调过程中,我们使用了 ASTD、ArSAS 和 SemEval 数据集。我们的微调过程和使用的超参数可以在我们的论文 "阿拉伯语预训练语言模型中变体、规模和任务类型的相互作用" 中找到。我们的微调代码可以在 这里 找到。
🚀 快速开始
你可以将CAMeLBERT MSA情感分析模型直接作为我们 CAMeL Tools 情感分析组件的一部分(推荐),或者作为transformers管道的一部分使用。
✨ 主要特性
- 通过微调预训练模型构建,利用多个公开数据集进行优化。
- 可集成到CAMeL Tools工具中,也能直接使用transformers管道调用。
📦 安装指南
⚠️ 重要提示
要下载我们的模型,你需要 transformers>=3.5.0
。否则,你可以手动下载模型。
💻 使用示例
基础用法
使用 CAMeL Tools 情感分析组件调用模型:
>>> from camel_tools.sentiment import SentimentAnalyzer
>>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
>>> sentences = ['أنا بخير', 'أنا لست بخير']
>>> sa.predict(sentences)
>>> ['positive', 'negative']
高级用法
直接使用transformers管道调用情感分析模型:
>>> from transformers import pipeline
>>> sa = pipeline('sentiment-analysis', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment')
>>> sentences = ['أنا بخير', 'أنا لست بخير']
>>> sa(sentences)
[{'label': 'positive', 'score': 0.9616648554801941},
{'label': 'negative', 'score': 0.9779177904129028}]
📚 详细文档
本模型的详细信息可参考论文 "阿拉伯语预训练语言模型中变体、规模和任务类型的相互作用" 。
📄 许可证
本项目采用Apache-2.0许可证。
📚 引用
如果你在研究中使用了本模型,请使用以下BibTeX引用:
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}