Koelectra Small V3 Nsmc
模型简介
该模型专门用于分析韩语电影评论的情感倾向,能够准确判断评论是正面还是负面。
模型特点
韩语情感分析
专门针对韩语电影评论优化的情感分析能力
高效小型模型
基于ELECTRA-Small架构,在保持较高准确率的同时具有较小的模型体积
SageMaker兼容
提供完整的SageMaker推理工具包接口,便于部署到云端
模型能力
韩语文本分类
情感倾向分析
电影评论评分预测
使用案例
影视评论分析
电影评论情感分析
自动分析用户对电影的评价是正面还是负面
准确率较高(具体数值未提供)
影视作品评价监控
实时监控社交媒体上对某部影视作品的评价倾向
可快速处理大量评论数据
🚀 情感二分类(使用KoELECTRA - Small - v3模型和Naver Sentiment Movie Corpus数据集进行微调)
本项目是一个情感二分类模型,利用KoELECTRA - Small - v3模型和Naver Sentiment Movie Corpus数据集进行微调,可对文本的情感倾向进行分类。
🚀 快速开始
本模型使用了SageMaker推理工具包的接口,因此可以轻松部署到SageMaker端点。
💻 使用示例
基础用法
以下是inference_nsmc.py
文件的代码,用于实现推理功能:
import json
import sys
import logging
import torch
from torch import nn
from transformers import ElectraConfig
from transformers import ElectraModel, AutoTokenizer, ElectraTokenizer, ElectraForSequenceClassification
logging.basicConfig(
level=logging.INFO,
format='[{%(filename)s:%(lineno)d} %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(filename='tmp.log'),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
max_seq_length = 128
classes = ['Neg', 'Pos']
tokenizer = AutoTokenizer.from_pretrained("daekeun-ml/koelectra-small-v3-nsmc")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def model_fn(model_path=None):
####
# If you have your own trained model
# Huggingface pre-trained model: 'monologg/koelectra-small-v3-discriminator'
####
#config = ElectraConfig.from_json_file(f'{model_path}/config.json')
#model = ElectraForSequenceClassification.from_pretrained(f'{model_path}/model.pth', config=config)
# Download model from the Huggingface hub
model = ElectraForSequenceClassification.from_pretrained('daekeun-ml/koelectra-small-v3-nsmc')
model.to(device)
return model
def input_fn(input_data, content_type="application/jsonlines"):
data_str = input_data.decode("utf-8")
jsonlines = data_str.split("\n")
transformed_inputs = []
for jsonline in jsonlines:
text = json.loads(jsonline)["text"][0]
logger.info("input text: {}".format(text))
encode_plus_token = tokenizer.encode_plus(
text,
max_length=max_seq_length,
add_special_tokens=True,
return_token_type_ids=False,
padding="max_length",
return_attention_mask=True,
return_tensors="pt",
truncation=True,
)
transformed_inputs.append(encode_plus_token)
return transformed_inputs
def predict_fn(transformed_inputs, model):
predicted_classes = []
for data in transformed_inputs:
data = data.to(device)
output = model(**data)
softmax_fn = nn.Softmax(dim=1)
softmax_output = softmax_fn(output[0])
_, prediction = torch.max(softmax_output, dim=1)
predicted_class_idx = prediction.item()
predicted_class = classes[predicted_class_idx]
score = softmax_output[0][predicted_class_idx]
logger.info("predicted_class: {}".format(predicted_class))
prediction_dict = {}
prediction_dict["predicted_label"] = predicted_class
prediction_dict['score'] = score.cpu().detach().numpy().tolist()
jsonline = json.dumps(prediction_dict)
logger.info("jsonline: {}".format(jsonline))
predicted_classes.append(jsonline)
predicted_classes_jsonlines = "\n".join(predicted_classes)
return predicted_classes_jsonlines
def output_fn(outputs, accept="application/jsonlines"):
return outputs, accept
高级用法
以下是test.py
文件的代码,用于测试推理功能:
>>> from inference_nsmc import model_fn, input_fn, predict_fn, output_fn
>>> with open('samples/nsmc.txt', mode='rb') as file:
>>> model_input_data = file.read()
>>> model = model_fn()
>>> transformed_inputs = input_fn(model_input_data)
>>> predicted_classes_jsonlines = predict_fn(transformed_inputs, model)
>>> model_outputs = output_fn(predicted_classes_jsonlines)
>>> print(model_outputs[0])
[{inference_nsmc.py:47} INFO - input text: 이 영화는 최고의 영화입니다
[{inference_nsmc.py:47} INFO - input text: 최악이에요. 배우의 연기력도 좋지 않고 내용도 너무 허접합니다
[{inference_nsmc.py:77} INFO - predicted_class: Pos
[{inference_nsmc.py:84} INFO - jsonline: {"predicted_label": "Pos", "score": 0.9619030952453613}
[{inference_nsmc.py:77} INFO - predicted_class: Neg
[{inference_nsmc.py:84} INFO - jsonline: {"predicted_label": "Neg", "score": 0.9994170665740967}
{"predicted_label": "Pos", "score": 0.9619030952453613}
{"predicted_label": "Neg", "score": 0.9994170665740967}
示例数据
以下是示例数据文件samples/nsmc.txt
的内容:
{"text": ["이 영화는 최고의 영화입니다"]}
{"text": ["최악이에요. 배우의 연기력도 좋지 않고 내용도 너무 허접합니다"]}
📚 详细文档
参考资料
- KoELECTRA: https://github.com/monologg/KoELECTRA
- Naver Sentiment Movie Corpus Dataset: https://github.com/e9t/nsmc
📄 许可证
本项目采用MIT许可证。
信息表格
属性 | 详情 |
---|---|
标签 | 分类 |
许可证 | MIT |
数据集 | Naver Sentiment Movie Corpus (nsmc) |
评估指标 | 准确率、F1值、精确率、召回率 |
Distilbert Base Uncased Finetuned Sst 2 English
Apache-2.0
基于DistilBERT-base-uncased在SST-2情感分析数据集上微调的文本分类模型,准确率91.3%
文本分类 英语
D
distilbert
5.2M
746
Xlm Roberta Base Language Detection
MIT
基于XLM-RoBERTa的多语言检测模型,支持20种语言的文本分类
文本分类
Transformers 支持多种语言

X
papluca
2.7M
333
Roberta Hate Speech Dynabench R4 Target
该模型通过动态生成数据集来改进在线仇恨检测,专注于从最差案例中学习以提高检测效果。
文本分类
Transformers 英语

R
facebook
2.0M
80
Bert Base Multilingual Uncased Sentiment
MIT
基于bert-base-multilingual-uncased微调的多语言情感分析模型,支持6种语言的商品评论情感分析
文本分类 支持多种语言
B
nlptown
1.8M
371
Emotion English Distilroberta Base
基于DistilRoBERTa-base微调的英文文本情感分类模型,可预测埃克曼六种基本情绪及中性类别。
文本分类
Transformers 英语

E
j-hartmann
1.1M
402
Robertuito Sentiment Analysis
基于RoBERTuito的西班牙语推文情感分析模型,支持POS(积极)/NEG(消极)/NEU(中性)三类情感分类
文本分类 西班牙语
R
pysentimiento
1.0M
88
Finbert Tone
FinBERT是一款基于金融通讯文本预训练的BERT模型,专注于金融自然语言处理领域。finbert-tone是其微调版本,用于金融情感分析任务。
文本分类
Transformers 英语

F
yiyanghkust
998.46k
178
Roberta Base Go Emotions
MIT
基于RoBERTa-base的多标签情感分类模型,在go_emotions数据集上训练,支持28种情感标签识别。
文本分类
Transformers 英语

R
SamLowe
848.12k
565
Xlm Emo T
XLM-EMO是一个基于XLM-T模型微调的多语言情感分析模型,支持19种语言,专门针对社交媒体文本的情感预测。
文本分类
Transformers 其他

X
MilaNLProc
692.30k
7
Deberta V3 Base Mnli Fever Anli
MIT
基于MultiNLI、Fever-NLI和ANLI数据集训练的DeBERTa-v3模型,擅长零样本分类和自然语言推理任务
文本分类
Transformers 英语

D
MoritzLaurer
613.93k
204
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98