Gpt2 Chinese Lyric
模型简介
该模型通过15万首中文歌词训练,能够生成风格多样的中文歌词文本,适用于音乐创作辅助场景
模型特点
中文歌词专项优化
基于15万首中文歌词微调,生成结果更具音乐性和韵律感
长序列支持
训练序列长度达512,可生成连贯的长篇幅歌词
开放预训练框架
支持通过UER-py/TencentPretrain框架继续训练和定制
模型能力
中文歌词生成
文本续写
风格模仿
使用案例
音乐创作
歌词灵感生成
根据用户提供的开头句生成完整歌词段落
如示例所示可生成符合语境的押韵歌词
风格模仿创作
模仿特定风格的歌词创作
教育娱乐
歌词创作教学
展示不同修辞手法的歌词生成案例
🚀 中文GPT2歌词模型
本模型用于生成中文歌词,借助预训练技术,能够以给定文本为基础,生成富有韵律和诗意的歌词内容,为歌词创作提供了便捷且高效的途径。
🚀 快速开始
你可以使用以下代码,通过文本生成管道直接使用该模型:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-lyric")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-lyric")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("最美的不是下雨天,是曾与你躲过雨的屋檐", max_length=100, do_sample=True)
[{'generated_text': '最美的不是下雨天,是曾与你躲过雨的屋檐 , 下 课 铃 声 响 起 的 瞬 间 , 我 们 的 笑 脸 , 有 太 多 回 忆 在 浮 现 , 是 你 总 在 我 身 边 , 不 知 道 会 不 会 再 见 , 从 现 在 开 始 到 永 远 , 想 说 的 语 言 凝 结 成 一 句 , 不 管 我 们 是 否 能 够 兑 现 , 想 说 的 语 言 凝 结'}]
✨ 主要特性
- 该模型由 UER-py 进行预训练,相关内容在 这篇论文 中有所介绍。此外,也可以使用 TencentPretrain 进行预训练,相关内容见 这篇论文。TencentPretrain 继承了 UER-py,支持参数超过十亿的模型,并将其扩展为多模态预训练框架。
- 此模型可用于生成中文歌词。你可以从 UER-py 模型库页面、GPT2-Chinese Github 页面 下载该模型,也可以通过 HuggingFace 从链接 gpt2-chinese-lyric 下载。
📦 安装指南
文档未提及安装相关内容,可参考模型对应仓库获取安装步骤。
💻 使用示例
基础用法
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-lyric")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-lyric")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("最美的不是下雨天,是曾与你躲过雨的屋檐", max_length=100, do_sample=True)
[{'generated_text': '最美的不是下雨天,是曾与你躲过雨的屋檐 , 下 课 铃 声 响 起 的 瞬 间 , 我 们 的 笑 脸 , 有 太 多 回 忆 在 浮 现 , 是 你 总 在 我 身 边 , 不 知 道 会 不 会 再 见 , 从 现 在 开 始 到 永 远 , 想 说 的 语 言 凝 结 成 一 句 , 不 管 我 们 是 否 能 够 兑 现 , 想 说 的 语 言 凝 结'}]
📚 详细文档
训练数据
训练数据包含 150,000 首中文歌词,这些歌词由 Chinese-Lyric-Corpus 和 MusicLyricChatbot 收集而来。
训练过程
该模型在 腾讯云 上使用 UER-py 进行预训练。我们在预训练模型 gpt2-base-chinese-cluecorpussmall 的基础上,以 512 的序列长度进行了 100,000 步的预训练。
数据预处理:
python3 preprocess.py --corpus_path corpora/lyric.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path lyric_dataset.pt --processes_num 32 \
--seq_length 512 --data_processor lm
模型预训练:
python3 pretrain.py --dataset_path lyric_dataset.pt \
--pretrained_model_path models/cluecorpussmall_gpt2_seq1024_model.bin-250000 \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/config.json \
--output_model_path models/lyric_gpt2_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 100000 --save_checkpoint_steps 10000 --report_steps 5000 \
--learning_rate 5e-5 --batch_size 64
最后,我们将预训练模型转换为 Huggingface 格式:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/lyric_gpt2_model.bin-100000 \
--output_model_path pytorch_model.bin \
--layers_num 12
BibTeX 引用和引用信息
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
}
📄 许可证
文档未提及许可证相关信息。
Phi 2 GGUF
其他
Phi-2是微软开发的一个小型但强大的语言模型,具有27亿参数,专注于高效推理和高质量文本生成。
大型语言模型 支持多种语言
P
TheBloke
41.5M
205
Roberta Large
MIT
基于掩码语言建模目标预训练的大型英语语言模型,采用改进的BERT训练方法
大型语言模型 英语
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基础模型的蒸馏版本,在保持相近性能的同时更轻量高效,适用于序列分类、标记分类等自然语言处理任务。
大型语言模型 英语
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一个多语言大语言模型,针对多语言对话用例进行了优化,在常见的行业基准测试中表现优异。
大型语言模型 英语
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基于100种语言的2.5TB过滤CommonCrawl数据预训练的多语言模型,采用掩码语言建模目标进行训练。
大型语言模型 支持多种语言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基于Transformer架构的英语预训练模型,通过掩码语言建模目标在海量文本上训练,支持文本特征提取和下游任务微调
大型语言模型 英语
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI发布的开放预训练Transformer语言模型套件,参数量从1.25亿到1750亿,旨在对标GPT-3系列性能,同时促进大规模语言模型的开放研究。
大型语言模型 英语
O
facebook
6.3M
198
1
基于transformers库的预训练模型,适用于多种NLP任务
大型语言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多语言大语言模型系列,包含8B、70B和405B参数规模,支持8种语言和代码生成,优化了多语言对话场景。
大型语言模型
Transformers 支持多种语言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基础版是由Google开发的文本到文本转换Transformer模型,参数规模2.2亿,支持多语言NLP任务。
大型语言模型 支持多种语言
T
google-t5
5.4M
702
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98