🚀 Chinese GPT2 Lyric Model
This model is designed to generate Chinese lyrics, leveraging pre - training techniques to offer high - quality lyric generation capabilities.
🚀 Quick Start
You can use the model directly with a pipeline for text generation:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-lyric")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-lyric")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("最美的不是下雨天,是曾与你躲过雨的屋檐", max_length=100, do_sample=True)
[{'generated_text': '最美的不是下雨天,是曾与你躲过雨的屋檐 , 下 课 铃 声 响 起 的 瞬 间 , 我 们 的 笑 脸 , 有 太 多 回 忆 在 浮 现 , 是 你 总 在 我 身 边 , 不 知 道 会 不 会 再 见 , 从 现 在 开 始 到 永 远 , 想 说 的 语 言 凝 结 成 一 句 , 不 管 我 们 是 否 能 够 兑 现 , 想 说 的 语 言 凝 结'}]
✨ Features
- The model is pre - trained by [UER - py](https://github.com/dbiir/UER - py/), which is introduced in this paper. It can also be pre - trained by TencentPretrain introduced in this paper. TencentPretrain inherits UER - py to support models with parameters above one billion and extends it to a multimodal pre - training framework.
- It can generate Chinese lyrics. You can download the model from the [UER - py Modelzoo page](https://github.com/dbiir/UER - py/wiki/Modelzoo), or [GPT2 - Chinese Github page](https://github.com/Morizeyao/GPT2 - Chinese), or via HuggingFace from the link [gpt2 - chinese - lyric](https://huggingface.co/uer/gpt2 - chinese - lyric).
📦 Installation
There is no specific installation content in the original text, so this section is skipped.
💻 Usage Examples
Basic Usage
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-lyric")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-lyric")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("最美的不是下雨天,是曾与你躲过雨的屋檐", max_length=100, do_sample=True)
[{'generated_text': '最美的不是下雨天,是曾与你躲过雨的屋檐 , 下 课 铃 声 响 起 的 瞬 间 , 我 们 的 笑 脸 , 有 太 多 回 忆 在 浮 现 , 是 你 总 在 我 身 边 , 不 知 道 会 不 会 再 见 , 从 现 在 开 始 到 永 远 , 想 说 的 语 言 凝 结 成 一 句 , 不 管 我 们 是 否 能 够 兑 现 , 想 说 的 语 言 凝 结'}]
📚 Documentation
Training data
Training data contains 150,000 Chinese lyrics which are collected by [Chinese - Lyric - Corpus](https://github.com/gaussic/Chinese - Lyric - Corpus) and MusicLyricChatbot.
Training procedure
The model is pre - trained by [UER - py](https://github.com/dbiir/UER - py/) on Tencent Cloud. We pre - train 100,000 steps with a sequence length of 512 on the basis of the pre - trained model [gpt2 - base - chinese - cluecorpussmall](https://huggingface.co/uer/gpt2 - base - chinese - cluecorpussmall)
python3 preprocess.py --corpus_path corpora/lyric.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path lyric_dataset.pt --processes_num 32 \
--seq_length 512 --data_processor lm
python3 pretrain.py --dataset_path lyric_dataset.pt \
--pretrained_model_path models/cluecorpussmall_gpt2_seq1024_model.bin-250000 \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/config.json \
--output_model_path models/lyric_gpt2_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 100000 --save_checkpoint_steps 10000 --report_steps 5000 \
--learning_rate 5e-5 --batch_size 64
Finally, we convert the pre - trained model into Huggingface's format:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/lyric_gpt2_model.bin-100000 \
--output_model_path pytorch_model.bin \
--layers_num 12
BibTeX entry and citation info
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
@article{zhao2019uer,
title={UER: An Open - Source Toolkit for Pre - training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP - IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre - training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
}
🔧 Technical Details
There is no specific technical details content that meets the requirements in the original text, so this section is skipped.
📄 License
There is no license information in the original text, so this section is skipped.