🚀 摘要生成模型
本项目提供了一个基于GPT2架构的摘要生成模型,可用于对文本进行摘要提取。该模型使用cnn_dailymail
数据集进行训练,在摘要生成任务上具有一定的效果。
🚀 快速开始
在右侧面板中,你可以尝试使用该模型(尽管它仅处理较短的序列长度)。在右侧面板中输入你想要摘要的文档。
📦 安装指南
基于GPT2基础架构的模型可以通过以下方式加载:
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
model = GPT2LMHeadModel.from_pretrained("philippelaban/summary_loop10")
tokenizer = GPT2TokenizerFast.from_pretrained("philippelaban/summary_loop10")
💻 使用示例
基础用法
以下是一个使用该模型进行摘要生成的示例:
document = "Bouncing Boulders Point to Quakes on Mars. A preponderance of boulder tracks on the red planet may be evidence of recent seismic activity. If a rock falls on Mars, and no one is there to see it, does it leave a trace? Yes, and it's a beautiful herringbone-like pattern, new research reveals. Scientists have now spotted thousands of tracks on the red planet created by tumbling boulders. Delicate chevron-shaped piles of Martian dust and sand frame the tracks, the team showed, and most fade over the course of a few years. Rockfalls have been spotted elsewhere in the solar system, including on the moon and even a comet. But a big open question is the timing of these processes on other worlds — are they ongoing or did they predominantly occur in the past?"
tokenized_document = tokenizer([document], max_length=300, truncation=True, return_tensors="pt")["input_ids"].cuda()
input_shape = tokenized_document.shape
outputs = model.generate(tokenized_document, do_sample=False, max_length=500, num_beams=4, num_return_sequences=4, no_repeat_ngram_size=6, return_dict_in_generate=True, output_scores=True)
candidate_sequences = outputs.sequences[:, input_shape[1]:]
candidate_scores = outputs.sequences_scores.tolist()
for candidate_tokens, score in zip(candidate_sequences, candidate_scores):
summary = tokenizer.decode(candidate_tokens)
print("[Score: %.3f] %s" % (score, summary[:summary.index("END")]))
示例输出
运行上述代码,可能会得到以下输出:
[Score: -0.084] Here's what you need to know about rockfalls
[Score: -0.087] Here's what you need to know about these tracks
[Score: -0.091] Here's what we know so far about these tracks
[Score: -0.101] Here's what you need to know about rockfall
📚 详细文档
你可以在GitHub仓库中获取更多信息、访问评分函数、训练脚本或示例训练日志:https://github.com/CannyLab/summary_loop
📄 许可证
本项目采用Apache 2.0许可证。