🚀 distilbart-cnn-12-6-samsum
该模型使用亚马逊SageMaker和全新的Hugging Face深度学习容器进行训练。它可用于文本摘要任务,能帮助用户快速提取文本的关键信息。
🚀 快速开始
此模型借助亚马逊SageMaker和Hugging Face深度学习容器进行训练。如需更多信息,可查看以下链接:
✨ 主要特性
超参数
{
"dataset_name": "samsum",
"do_eval": true,
"do_train": true,
"fp16": true,
"learning_rate": 5e-05,
"model_name_or_path": "sshleifer/distilbart-cnn-12-6",
"num_train_epochs": 3,
"output_dir": "/opt/ml/model",
"per_device_eval_batch_size": 8,
"per_device_train_batch_size": 8,
"seed": 7
}
📚 详细文档
训练结果
属性 |
详情 |
epoch |
3.0 |
init_mem_cpu_alloc_delta |
180338 |
init_mem_cpu_peaked_delta |
18282 |
init_mem_gpu_alloc_delta |
1222242816 |
init_mem_gpu_peaked_delta |
0 |
train_mem_cpu_alloc_delta |
6971403 |
train_mem_cpu_peaked_delta |
640733 |
train_mem_gpu_alloc_delta |
4910897664 |
train_mem_gpu_peaked_delta |
23331969536 |
train_runtime |
155.2034 |
train_samples |
14732 |
train_samples_per_second |
2.242 |
评估结果
属性 |
详情 |
epoch |
3.0 |
eval_loss |
1.4209576845169067 |
eval_mem_cpu_alloc_delta |
868003 |
eval_mem_cpu_peaked_delta |
18250 |
eval_mem_gpu_alloc_delta |
0 |
eval_mem_gpu_peaked_delta |
328244736 |
eval_runtime |
0.6088 |
eval_samples |
818 |
eval_samples_per_second |
1343.647 |
💻 使用示例
基础用法
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/distilbart-cnn-12-6-samsum")
conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
'''
nlp(conversation)
📄 许可证
本项目采用Apache-2.0许可证。