🚀 Bart-Large CiteSum (Titles)
这是在CiteSum上进行微调的facebook/bart-large模型。“src”列是输入,“title”列是目标摘要。
✨ 主要特性
- 基于facebook/bart-large模型在CiteSum数据集上微调,用于文本摘要任务。
- 可根据输入文本生成高质量的标题摘要。
📦 安装指南
文档未提及安装步骤,暂不展示。
💻 使用示例
基础用法
from transformers import pipeline
summarizer = pipeline("summarization", model="yuningm/bart-large-citesum-title")
article = ''' We describe a convolutional neural network that learns\
feature representations for short textual posts using hashtags as a\
supervised signal. The proposed approach is trained on up to 5.5 \
billion words predicting 100,000 possible hashtags. As well as strong\
performance on the hashtag prediction task itself, we show that its \
learned representation of text (ignoring the hashtag labels) is useful\
for other tasks as well. To that end, we present results on a document\
recommendation task, where it also outperforms a number of baselines.
'''
summarizer(article)
📚 详细文档
作者信息
作者
Yuning Mao, Ming Zhong, Jiawei Han
所属机构
University of Illinois Urbana-Champaign
{yuningm2, mingz5, hanj}@illinois.edu
实验结果
{
"epoch": 6.78,
"eval_gen_len": 17.1775,
"eval_loss": 1.9626615047454834,
"eval_rouge1": 51.4834,
"eval_rouge2": 29.9178,
"eval_rougeL": 45.4882,
"eval_rougeLsum": 45.517,
"eval_runtime": 351.9638,
"eval_samples": 4681,
"eval_samples_per_second": 13.3,
"eval_steps_per_second": 0.21,
"predict_gen_len": 17.1032,
"predict_loss": 1.9391602277755737,
"predict_rouge1": 52.0304,
"predict_rouge2": 30.1511,
"predict_rougeL": 45.9902,
"predict_rougeLsum": 46.0068,
"predict_runtime": 363.9691,
"predict_samples": 4882,
"predict_samples_per_second": 13.413,
"predict_steps_per_second": 0.212,
"train_loss": 1.0821667497907366,
"train_runtime": 24401.3762,
"train_samples": 82653,
"train_samples_per_second": 65.57,
"train_steps_per_second": 8.196
}
数据集描述
CiteSum:引用文本引导的科学极端摘要和低资源领域适应。
CiteSum包含来自科学论文引用文本的TLDR摘要,无需人工标注,使其规模比之前人工策划的数据集SciTLDR大约大30倍。
相关链接
- 项目主页:https://github.com/morningmoni/CiteSum
- 论文链接:https://arxiv.org/abs/2205.06207
- Hub上的数据集:https://huggingface.co/datasets/nbroad/citesum
📄 许可证
本项目采用CC BY-NC 4.0许可证。