🚀 泰米尔语摘要生成与英语-泰米尔语翻译模型
本模型可用于泰米尔语摘要生成以及英语到泰米尔语的翻译任务,借助Hugging Face Transformers库进行微调。本README将为你介绍该模型的使用方法和功能。
📚 详细文档
模型详情
📦 安装指南
你可以使用pip安装所需的依赖项:
pip install transformers
💻 使用示例
基础用法
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("suriya7/Tamil-Summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/Tamil-Summarization")
input_text = "Be the change that you wish to see in the world."
input_ids = tokenizer.encode(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids,max_length=128)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Translated Tamil Sentence:", translated_text)
tamil_article = """இது குறித்து அவர் பிபிசி தமிழிடம் கூறுகையில், "இத்தீர்ப்பை மிகச் சிறந்த முற்போக்கான தீர்ப்பாக பார்க்கிறேன்.
அடிப்படை உரிமை என்ன என்பதை மிகவும் தீவிரமாக இத்தீர்ப்பு விளக்கியுள்ளது" என்றார்.
"இந்திய அரசியலமைப்பின் 21-ஆவது விதியை மிகவும் ஆழமாக நீதிமன்றம் விளக்கியுள்ளது என்றும்,
ஏற்கனவே இரு வேறு வழக்குகளில் தனி நபர் அந்தரங்கத்தை அடிப்படை உரிமை பாதுகாக்காது எனக் குறிப்பிட்ட தீர்ப்புகளைத் திருத்தி
அந்த உரிமையை தற்போது உச்ச நீதிமன்றம் பாதுகாத்துள்ளது" என்று என்.ராம் கூறினார்.
"ஆதார் பதிவு விவகாரத்தில் இந்த தீர்ப்பு நிச்சயமாக பிரதிபலிக்கும் என்று கூறும் அவர், ஆதார் முறையைத் திணிக்க முயற்சிக்கும்
மத்திய அரசின் எண்ணம் இனி கடினமாக இருக்கும்" என்றார். "நெருக்கடி காலத்தில் நீதிபதி எச்.ஆர். கன்னா அளித்த தீர்ப்பு ஏற்படுத்திய
மாற்றத்தைப் போல இந்தத் தீர்ப்பும் சமூகத்தில் மாற்றத்தை ஏற்படுத்தலாம் என்று சிலர் கருதுவதாகவும்,மொத்தத்தில் இது ஒரு முக்கியத்துவம் நிறைந்த தீர்ப்பாகும்"
என்றும் என்.ராம் தெரிவித்தார். பிற செய்திகள் : சமூக ஊடகங்களில் பிபிசி தமிழ்"""
tamil_input_ids = tokenizer.encode(tamil_article, return_tensors="pt",truncation=True).input_ids
summary_ids = model.generate(tamil_input_ids, max_length=128)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print("Summarized Tamil Text:", summary)
高级用法
模型输出
- 翻译任务:模型将输出泰米尔语的翻译文本。
- 摘要生成任务:模型将输出泰米尔语文本的摘要。
微调说明
如果你想在自己的数据集上对模型进行微调,可以按照以下步骤准备数据:
- 对于摘要生成任务,使用前缀 "summarize: "
- 对于翻译任务,默认无需前缀,可直接对输入进行分词,并使用目标文本对输出进行分词。
模型性能

📄 许可证
本项目采用Apache-2.0许可证。