🚀 Percival_01-7b-slerp
Percival_01-7b-slerp是一个强大的模型,在OPENLLM排行榜上位列7B模型第二!它通过LazyMergekit将以下两个模型进行合并:
🚀 快速开始
本部分将介绍如何快速使用Percival_01-7b-slerp模型。
安装依赖
!pip install -qU transformers accelerate
代码示例
from transformers import AutoTokenizer
import transformers
import torch
model = "AurelPx/Percival_01-7b-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
✨ 主要特性
- 模型合并:通过LazyMergekit将liminerity/M7-7b和Gille/StrangeMerges_32-7B-slerp两个模型进行合并。
- 高性能:在OPENLLM排行榜上位列7B模型第二。
📦 安装指南
运行以下命令安装所需的库:
!pip install -qU transformers accelerate
💻 使用示例
基础用法
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "AurelPx/Percival_01-7b-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
📚 详细文档
🧩 配置信息
以下是模型合并的配置信息:
slices:
- sources:
- model: liminerity/M7-7b
layer_range: [0, 32]
- model: Gille/StrangeMerges_32-7B-slerp
layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/M7-7b
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
📄 许可证
本项目采用Apache-2.0许可证。