🚀 wav2vec2-base-intent-classification-ori
本模型是在 facebook/wav2vec2-base 基础上,针对 intent-dataset 数据集进行微调得到的。它在评估集上取得了以下结果:
🚀 快速开始
此模型是基于 facebook/wav2vec2-base
微调而来,可用于特定的意图分类任务。
📚 详细文档
模型描述
该模型是 wav2vec2-base
的微调版本,用于意图分类任务。
预期用途与限制
文档暂未提供相关信息。
训练和评估数据
文档暂未提供相关信息。
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率:3e-05
- 训练批次大小:1
- 评估批次大小:1
- 随机种子:42
- 梯度累积步数:4
- 总训练批次大小:4
- 优化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e-08)
- 学习率调度器类型:线性
- 学习率调度器热身比例:0.1
- 训练轮数:45
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
准确率 |
2.1867 |
1.0 |
28 |
2.1745 |
0.2708 |
2.1177 |
2.0 |
56 |
2.1165 |
0.2708 |
2.1012 |
3.0 |
84 |
2.0553 |
0.2708 |
1.9851 |
4.0 |
112 |
1.9551 |
0.375 |
1.9092 |
5.0 |
140 |
1.9765 |
0.2917 |
1.6848 |
6.0 |
168 |
1.8461 |
0.2917 |
1.6576 |
7.0 |
196 |
1.5223 |
0.5 |
1.4492 |
8.0 |
224 |
1.4500 |
0.4792 |
1.2193 |
9.0 |
252 |
1.5349 |
0.4792 |
1.1149 |
10.0 |
280 |
1.2159 |
0.5833 |
1.0615 |
11.0 |
308 |
1.1469 |
0.6875 |
1.0584 |
12.0 |
336 |
1.2778 |
0.6042 |
0.8237 |
13.0 |
364 |
1.1774 |
0.5625 |
0.6699 |
14.0 |
392 |
0.9661 |
0.6875 |
0.7414 |
15.0 |
420 |
1.2787 |
0.5208 |
0.5324 |
16.0 |
448 |
0.8592 |
0.7292 |
0.3753 |
17.0 |
476 |
0.6860 |
0.7917 |
0.3274 |
18.0 |
504 |
0.6210 |
0.8333 |
0.3667 |
19.0 |
532 |
0.7310 |
0.75 |
0.2347 |
20.0 |
560 |
0.6801 |
0.7292 |
0.2036 |
21.0 |
588 |
0.9876 |
0.6875 |
0.1711 |
22.0 |
616 |
0.6323 |
0.7917 |
0.205 |
23.0 |
644 |
0.4414 |
0.8958 |
0.0892 |
24.0 |
672 |
0.4253 |
0.8958 |
0.0777 |
25.0 |
700 |
0.4703 |
0.8958 |
0.0717 |
26.0 |
728 |
0.4883 |
0.8958 |
0.041 |
27.0 |
756 |
0.6224 |
0.8542 |
0.0493 |
28.0 |
784 |
0.5839 |
0.875 |
0.0405 |
29.0 |
812 |
0.6454 |
0.8542 |
0.04 |
30.0 |
840 |
0.6102 |
0.875 |
0.0333 |
31.0 |
868 |
0.6080 |
0.875 |
0.0303 |
32.0 |
896 |
0.5539 |
0.875 |
0.025 |
33.0 |
924 |
0.5799 |
0.8958 |
0.0246 |
34.0 |
952 |
0.5766 |
0.8958 |
0.0209 |
35.0 |
980 |
0.5700 |
0.8958 |
0.0225 |
36.0 |
1008 |
0.5709 |
0.8958 |
0.0225 |
37.0 |
1036 |
0.5582 |
0.8958 |
0.0217 |
38.0 |
1064 |
0.5258 |
0.875 |
0.0207 |
39.0 |
1092 |
0.5058 |
0.8958 |
0.0234 |
40.0 |
1120 |
0.4981 |
0.8958 |
0.021 |
41.0 |
1148 |
0.4928 |
0.9167 |
0.0224 |
42.0 |
1176 |
0.4962 |
0.9167 |
0.0212 |
43.0 |
1204 |
0.5329 |
0.8958 |
0.0208 |
44.0 |
1232 |
0.5727 |
0.8958 |
0.0206 |
45.0 |
1260 |
0.5733 |
0.8958 |
框架版本
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
📄 许可证
本项目采用 Apache-2.0 许可证。