Wav2vec2 Large Xls R 300m Br D2
基于facebook/wav2vec2-xls-r-300m在布列塔尼语(Common Voice 8.0)上微调的语音识别模型
下载量 21
发布时间 : 3/2/2022
模型简介
这是一个针对布列塔尼语优化的自动语音识别(ASR)模型,基于wav2vec 2.0架构的大规模XLS-R变体,在Common Voice 8.0的布列塔尼语数据集上微调。
模型特点
多语言预训练基础
基于XLS-R-300M多语言预训练模型,具有强大的跨语言迁移能力
布列塔尼语优化
专门针对布列塔尼语进行微调,在Common Voice测试集上WER达到0.4977
高效训练
使用混合精度训练和梯度累积等技术优化训练效率
模型能力
布列塔尼语语音识别
语音转文本
使用案例
语音转录
布列塔尼语语音转录
将布列塔尼语语音内容转换为文本
测试WER 0.4977,CER 0.1809
语言保护
少数民族语言数字化
帮助保护和数字化布列塔尼语等少数民族语言
🚀 wav2vec2-large-xls-r-300m-br-d2
本模型是 facebook/wav2vec2-xls-r-300m 在 MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR 数据集上的微调版本。它在评估集上取得了以下成果,有助于提升语音识别的准确性和效率。
🚀 快速开始
本模型是在 MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR 数据集上对 facebook/wav2vec2-xls-r-300m 进行微调得到的。在评估集上,它有如下表现:
- 损失值:1.1257
- 字错率(Wer):0.4631
评估命令
- 在 mozilla-foundation/common_voice_8_0 测试分割集上进行评估
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-br-d2 --dataset mozilla-foundation/common_voice_8_0 --config br --split test --log_outputs
- 在 speech-recognition-community-v2/dev_data 上进行评估 布列塔尼语在 speech-recognition-community-v2/dev_data 中不可用。
✨ 主要特性
- 微调优化:基于 facebook/wav2vec2-xls-r-300m 进行微调,适配特定数据集。
- 多指标评估:通过损失值、字错率(Wer)等多个指标进行评估。
📚 详细文档
模型信息
属性 | 详情 |
---|---|
语言 | 巴西葡萄牙语(br) |
许可证 | Apache-2.0 |
标签 | generated_from_trainer、robust-speech-event、hf-asr-leaderboard |
数据集 | mozilla-foundation/common_voice_8_0 |
评估指标 | 字错率(wer) |
模型索引
- 名称:wav2vec2-large-xls-r-300m-br-d2
- 结果:
- 任务:自动语音识别(Automatic Speech Recognition)
- 数据集:
- 类型:mozilla-foundation/common_voice_8_0
- 名称:Common Voice 8
- 参数:br
- 评估指标:
- 类型:字错率(wer)
- 值:0.49770598355954887
- 名称:测试字错率(Test WER)
- 名称:测试字符错误率(Test CER)
- 类型:字符错误率(cer)
- 值:0.18090500890299605
- 任务:自动语音识别(Automatic Speech Recognition)
- 数据集:
- 名称:Robust Speech Event - Dev Data
- 类型:speech-recognition-community-v2/dev_data
- 参数:br
- 评估指标:
- 名称:测试字错率(Test WER)
- 类型:字错率(wer)
- 值:NA
- 名称:测试字符错误率(Test CER)
- 类型:字符错误率(cer)
- 值:NA
训练超参数
- 学习率(learning_rate):0.00034
- 训练批次大小(train_batch_size):16
- 评估批次大小(eval_batch_size):8
- 随机种子(seed):42
- 梯度累积步数(gradient_accumulation_steps):2
- 总训练批次大小(total_train_batch_size):32
- 优化器(optimizer):Adam(β1=0.9,β2=0.999,ε=1e-08)
- 学习率调度器类型(lr_scheduler_type):线性(linear)
- 学习率调度器热身步数(lr_scheduler_warmup_steps):750
- 训练轮数(num_epochs):50
- 混合精度训练(mixed_precision_training):原生自动混合精度(Native AMP)
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | 字错率(Wer) |
---|---|---|---|---|
14.0379 | 0.68 | 100 | 5.6808 | 1.0 |
3.9145 | 1.35 | 200 | 3.1970 | 1.0 |
3.0293 | 2.03 | 300 | 2.9513 | 1.0 |
2.0927 | 2.7 | 400 | 1.4545 | 0.8887 |
1.1556 | 3.38 | 500 | 1.0966 | 0.7564 |
0.9628 | 4.05 | 600 | 0.9808 | 0.7364 |
0.7869 | 4.73 | 700 | 1.0488 | 0.7355 |
0.703 | 5.41 | 800 | 0.9500 | 0.6881 |
0.6657 | 6.08 | 900 | 0.9309 | 0.6259 |
0.5663 | 6.76 | 1000 | 0.9133 | 0.6357 |
0.496 | 7.43 | 1100 | 0.9890 | 0.6028 |
0.4748 | 8.11 | 1200 | 0.9469 | 0.5894 |
0.4135 | 8.78 | 1300 | 0.9270 | 0.6045 |
0.3579 | 9.46 | 1400 | 0.8818 | 0.5708 |
0.353 | 10.14 | 1500 | 0.9244 | 0.5781 |
0.334 | 10.81 | 1600 | 0.9009 | 0.5638 |
0.2917 | 11.49 | 1700 | 1.0132 | 0.5828 |
0.29 | 12.16 | 1800 | 0.9696 | 0.5668 |
0.2691 | 12.84 | 1900 | 0.9811 | 0.5455 |
0.25 | 13.51 | 2000 | 0.9951 | 0.5624 |
0.2467 | 14.19 | 2100 | 0.9653 | 0.5573 |
0.2242 | 14.86 | 2200 | 0.9714 | 0.5378 |
0.2066 | 15.54 | 2300 | 0.9829 | 0.5394 |
0.2075 | 16.22 | 2400 | 1.0547 | 0.5520 |
0.1923 | 16.89 | 2500 | 1.0014 | 0.5397 |
0.1919 | 17.57 | 2600 | 0.9978 | 0.5477 |
0.1908 | 18.24 | 2700 | 1.1064 | 0.5397 |
0.157 | 18.92 | 2800 | 1.0629 | 0.5238 |
0.159 | 19.59 | 2900 | 1.0642 | 0.5321 |
0.1652 | 20.27 | 3000 | 1.0207 | 0.5328 |
0.141 | 20.95 | 3100 | 0.9948 | 0.5312 |
0.1417 | 21.62 | 3200 | 1.0338 | 0.5328 |
0.1514 | 22.3 | 3300 | 1.0513 | 0.5313 |
0.1365 | 22.97 | 3400 | 1.0357 | 0.5291 |
0.1319 | 23.65 | 3500 | 1.0587 | 0.5167 |
0.1298 | 24.32 | 3600 | 1.0636 | 0.5236 |
0.1245 | 25.0 | 3700 | 1.1367 | 0.5280 |
0.1114 | 25.68 | 3800 | 1.0633 | 0.5200 |
0.1088 | 26.35 | 3900 | 1.0495 | 0.5210 |
0.1175 | 27.03 | 4000 | 1.0897 | 0.5095 |
0.1043 | 27.7 | 4100 | 1.0580 | 0.5309 |
0.0951 | 28.38 | 4200 | 1.0448 | 0.5067 |
0.1011 | 29.05 | 4300 | 1.0665 | 0.5137 |
0.0889 | 29.73 | 4400 | 1.0579 | 0.5026 |
0.0833 | 30.41 | 4500 | 1.0740 | 0.5037 |
0.0889 | 31.08 | 4600 | 1.0933 | 0.5083 |
0.0784 | 31.76 | 4700 | 1.0715 | 0.5089 |
0.0767 | 32.43 | 4800 | 1.0658 | 0.5049 |
0.0769 | 33.11 | 4900 | 1.1118 | 0.4979 |
0.0722 | 33.78 | 5000 | 1.1413 | 0.4986 |
0.0709 | 34.46 | 5100 | 1.0706 | 0.4885 |
0.0664 | 35.14 | 5200 | 1.1217 | 0.4884 |
0.0648 | 35.81 | 5300 | 1.1298 | 0.4941 |
0.0657 | 36.49 | 5400 | 1.1330 | 0.4920 |
0.0582 | 37.16 | 5500 | 1.0598 | 0.4835 |
0.0602 | 37.84 | 5600 | 1.1097 | 0.4943 |
0.0598 | 38.51 | 5700 | 1.0976 | 0.4876 |
0.0547 | 39.19 | 5800 | 1.0734 | 0.4825 |
0.0561 | 39.86 | 5900 | 1.0926 | 0.4850 |
0.0516 | 40.54 | 6000 | 1.1579 | 0.4751 |
0.0478 | 41.22 | 6100 | 1.1384 | 0.4706 |
0.0396 | 41.89 | 6200 | 1.1462 | 0.4739 |
0.0472 | 42.57 | 6300 | 1.1277 | 0.4732 |
0.0447 | 43.24 | 6400 | 1.1517 | 0.4752 |
0.0423 | 43.92 | 6500 | 1.1219 | 0.4784 |
0.0426 | 44.59 | 6600 | 1.1311 | 0.4724 |
0.0391 | 45.27 | 6700 | 1.1135 | 0.4692 |
0.0362 | 45.95 | 6800 | 1.0878 | 0.4645 |
0.0329 | 46.62 | 6900 | 1.1137 | 0.4668 |
0.0356 | 47.3 | 7000 | 1.1233 | 0.4687 |
0.0328 | 47.97 | 7100 | 1.1238 | 0.4653 |
0.0323 | 48.65 | 7200 | 1.1307 | 0.4646 |
0.0325 | 49.32 | 7300 | 1.1242 | 0.4645 |
0.03 | 50.0 | 7400 | 1.1257 | 0.4631 |
框架版本
- Transformers:4.16.2
- Pytorch:1.10.0+cu111
- Datasets:1.18.3
- Tokenizers:0.11.0
📄 许可证
本模型采用 Apache-2.0 许可证。
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别 支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers 支持多种语言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别 日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers 支持多种语言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别 阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98