Wav2vec2 Speechdat
W
Wav2vec2 Speechdat
由 birgermoell 开发
该模型是基于facebook/wav2vec2-large-xlsr-53在COMMON_VOICE - SV-SE数据集上微调的瑞典语自动语音识别模型。
下载量 29
发布时间 : 3/2/2022
模型简介
这是一个针对瑞典语的自动语音识别(ASR)模型,基于wav2vec2架构,在Common Voice瑞典语数据集上进行了微调。
模型特点
瑞典语优化
专门针对瑞典语进行微调,在瑞典语语音识别任务上表现良好
基于wav2vec2架构
采用facebook的wav2vec2-large-xlsr-53作为基础模型,具有强大的语音特征提取能力
Common Voice数据集训练
使用高质量的Common Voice瑞典语数据集进行训练
模型能力
瑞典语语音识别
语音转文本
使用案例
语音转录
瑞典语语音转录
将瑞典语语音内容转换为文本
在评估集上取得0.2927的词错误率(WER)
语音助手
瑞典语语音命令识别
用于瑞典语语音助手系统中的命令识别
🚀 wav2vec2-speechdat
该模型是 facebook/wav2vec2-large-xlsr-53 在 COMMON_VOICE - SV-SE 数据集上的微调版本。它在评估集上取得了以下成果:
- 损失值:0.4578
- 字错率(Wer):0.2927
🚀 快速开始
此模型是语音识别领域的重要工具,基于预训练模型 facebook/wav2vec2-large-xlsr-53
在特定数据集上微调而来,在评估集上展现出了良好的性能。
📚 详细文档
训练超参数
训练过程中使用了以下超参数:
- 学习率(learning_rate):0.0003
- 训练批次大小(train_batch_size):16
- 评估批次大小(eval_batch_size):8
- 随机种子(seed):42
- 梯度累积步数(gradient_accumulation_steps):2
- 总训练批次大小(total_train_batch_size):32
- 优化器(optimizer):Adam,β1=0.9,β2=0.999,ε=1e-08
- 学习率调度器类型(lr_scheduler_type):线性
- 学习率调度器热身步数(lr_scheduler_warmup_steps):500
- 训练轮数(num_epochs):15.0
- 混合精度训练(mixed_precision_training):Native AMP
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | 字错率(Wer) |
---|---|---|---|---|
No log | 0.01 | 100 | 3.6252 | 1.0 |
No log | 0.02 | 200 | 3.1906 | 1.0 |
No log | 0.03 | 300 | 3.1090 | 1.0 |
No log | 0.04 | 400 | 1.8796 | 0.9955 |
6.2575 | 0.05 | 500 | 1.3515 | 0.9058 |
6.2575 | 0.06 | 600 | 1.1209 | 0.8328 |
6.2575 | 0.07 | 700 | 1.1404 | 0.8309 |
6.2575 | 0.09 | 800 | 1.0599 | 0.8021 |
6.2575 | 0.1 | 900 | 0.9901 | 0.8335 |
0.7737 | 0.11 | 1000 | 0.8846 | 0.7400 |
0.7737 | 0.12 | 1100 | 0.9971 | 0.7820 |
0.7737 | 0.13 | 1200 | 0.8665 | 0.7123 |
0.7737 | 0.14 | 1300 | 0.8490 | 0.7366 |
0.7737 | 0.15 | 1400 | 0.8250 | 0.6765 |
0.6183 | 0.16 | 1500 | 0.8291 | 0.6965 |
0.6183 | 0.17 | 1600 | 0.7946 | 0.6823 |
0.6183 | 0.18 | 1700 | 0.8239 | 0.6894 |
0.6183 | 0.19 | 1800 | 0.8282 | 0.6796 |
0.6183 | 0.2 | 1900 | 0.7645 | 0.6518 |
0.561 | 0.21 | 2000 | 0.7530 | 0.6367 |
0.561 | 0.22 | 2100 | 0.7296 | 0.6177 |
0.561 | 0.24 | 2200 | 0.7527 | 0.6498 |
0.561 | 0.25 | 2300 | 0.7210 | 0.6316 |
0.561 | 0.26 | 2400 | 0.7938 | 0.6757 |
0.5402 | 0.27 | 2500 | 0.7485 | 0.6372 |
0.5402 | 0.28 | 2600 | 0.7146 | 0.6133 |
0.5402 | 0.29 | 2700 | 0.7308 | 0.6626 |
0.5402 | 0.3 | 2800 | 0.7078 | 0.5949 |
0.5402 | 0.31 | 2900 | 0.7679 | 0.6373 |
0.5303 | 0.32 | 3000 | 0.7263 | 0.6502 |
0.5303 | 0.33 | 3100 | 0.6613 | 0.5846 |
0.5303 | 0.34 | 3200 | 0.6784 | 0.5783 |
0.5303 | 0.35 | 3300 | 0.6908 | 0.5833 |
0.5303 | 0.36 | 3400 | 0.6595 | 0.5826 |
0.503 | 0.37 | 3500 | 0.6717 | 0.5938 |
0.503 | 0.39 | 3600 | 0.6938 | 0.5791 |
0.503 | 0.4 | 3700 | 0.6677 | 0.6052 |
0.503 | 0.41 | 3800 | 0.6544 | 0.5554 |
0.503 | 0.42 | 3900 | 0.6514 | 0.5728 |
0.4959 | 0.43 | 4000 | 0.6847 | 0.6188 |
0.4959 | 0.44 | 4100 | 0.6626 | 0.5869 |
0.4959 | 0.45 | 4200 | 0.6670 | 0.5700 |
0.4959 | 0.46 | 4300 | 0.6596 | 0.5846 |
0.4959 | 0.47 | 4400 | 0.6523 | 0.5468 |
0.4824 | 0.48 | 4500 | 0.6392 | 0.5688 |
0.4824 | 0.49 | 4600 | 0.6561 | 0.5687 |
0.4824 | 0.5 | 4700 | 0.6697 | 0.5817 |
0.4824 | 0.51 | 4800 | 0.6348 | 0.5608 |
0.4824 | 0.52 | 4900 | 0.6561 | 0.5600 |
0.4714 | 0.54 | 5000 | 0.6522 | 0.6181 |
0.4714 | 0.55 | 5100 | 0.6858 | 0.5921 |
0.4714 | 0.56 | 5200 | 0.6706 | 0.5497 |
0.4714 | 0.57 | 5300 | 0.7123 | 0.5768 |
0.4714 | 0.58 | 5400 | 0.6599 | 0.6100 |
0.471 | 0.59 | 5500 | 0.6421 | 0.5626 |
0.471 | 0.6 | 5600 | 0.6395 | 0.5753 |
0.471 | 0.61 | 5700 | 0.6788 | 0.5481 |
0.471 | 0.62 | 5800 | 0.6386 | 0.5516 |
0.471 | 0.63 | 5900 | 0.6694 | 0.5913 |
0.4707 | 0.64 | 6000 | 0.6251 | 0.5699 |
0.4707 | 0.65 | 6100 | 0.6243 | 0.5567 |
0.4707 | 0.66 | 6200 | 0.6645 | 0.5629 |
0.4707 | 0.67 | 6300 | 0.6296 | 0.5895 |
0.4707 | 0.69 | 6400 | 0.6078 | 0.5183 |
0.4632 | 0.7 | 6500 | 0.6270 | 0.5619 |
0.4632 | 0.71 | 6600 | 0.6050 | 0.5336 |
0.4632 | 0.72 | 6700 | 0.6185 | 0.5449 |
0.4632 | 0.73 | 6800 | 0.6281 | 0.5645 |
0.4632 | 0.74 | 6900 | 0.5877 | 0.5084 |
0.4514 | 0.75 | 7000 | 0.6199 | 0.5403 |
0.4514 | 0.76 | 7100 | 0.6293 | 0.5275 |
0.4514 | 0.77 | 7200 | 0.6290 | 0.5447 |
0.4514 | 0.78 | 7300 | 0.6130 | 0.5373 |
0.4514 | 0.79 | 7400 | 0.6138 | 0.5285 |
0.4457 | 0.8 | 7500 | 0.6040 | 0.5259 |
0.4457 | 0.81 | 7600 | 0.6220 | 0.5686 |
0.4457 | 0.82 | 7700 | 0.5915 | 0.5164 |
0.4457 | 0.84 | 7800 | 0.6270 | 0.5289 |
0.4457 | 0.85 | 7900 | 0.6224 | 0.5515 |
0.4458 | 0.86 | 8000 | 0.6161 | 0.5323 |
0.4458 | 0.87 | 8100 | 0.5827 | 0.5122 |
0.4458 | 0.88 | 8200 | 0.6067 | 0.5202 |
0.4458 | 0.89 | 8300 | 0.6087 | 0.5192 |
0.4458 | 0.9 | 8400 | 0.6859 | 0.5796 |
0.4409 | 0.91 | 8500 | 0.6180 | 0.5131 |
0.4409 | 0.92 | 8600 | 0.5945 | 0.4948 |
0.4409 | 0.93 | 8700 | 0.5967 | 0.5532 |
0.4409 | 0.94 | 8800 | 0.5770 | 0.4961 |
0.4409 | 0.95 | 8900 | 0.5809 | 0.5203 |
0.4305 | 0.96 | 9000 | 0.5805 | 0.5039 |
0.4305 | 0.97 | 9100 | 0.5873 | 0.5188 |
0.4305 | 0.98 | 9200 | 0.6277 | 0.5516 |
0.4305 | 1.0 | 9300 | 0.5727 | 0.5052 |
0.4305 | 1.01 | 9400 | 0.5858 | 0.5123 |
0.4264 | 1.02 | 9500 | 0.5692 | 0.4968 |
0.4264 | 1.03 | 9600 | 0.5954 | 0.5117 |
0.4264 | 1.04 | 9700 | 0.5904 | 0.5076 |
0.4264 | 1.05 | 9800 | 0.6046 | 0.5101 |
0.4264 | 1.06 | 9900 | 0.5616 | 0.4926 |
0.4176 | 1.07 | 10000 | 0.5971 | 0.5368 |
0.4176 | 1.08 | 10100 | 0.5706 | 0.4940 |
0.4176 | 1.09 | 10200 | 0.5612 | 0.5032 |
0.4176 | 1.1 | 10300 | 0.5672 | 0.4944 |
0.4176 | 1.11 | 10400 | 0.5915 | 0.5218 |
0.4033 | 1.12 | 10500 | 0.5706 | 0.5051 |
0.4033 | 1.13 | 10600 | 0.5661 | 0.4934 |
0.4033 | 1.15 | 10700 | 0.5724 | 0.4903 |
0.4033 | 1.16 | 10800 | 0.5792 | 0.4940 |
0.4033 | 1.17 | 10900 | 0.5744 | 0.4911 |
0.392 | 1.18 | 11000 | 0.5767 | 0.5162 |
0.392 | 1.19 | 11100 | 0.5588 | 0.4835 |
0.392 | 1.2 | 11200 | 0.5609 | 0.4922 |
0.392 | 1.21 | 11300 | 0.5890 | 0.4914 |
0.392 | 1.22 | 11400 | 0.5525 | 0.4897 |
0.387 | 1.23 | 11500 | 0.5704 | 0.5051 |
0.387 | 1.24 | 11600 | 0.5539 | 0.5014 |
0.387 | 1.25 | 11700 | 0.5473 | 0.4882 |
0.387 | 1.26 | 11800 | 0.5662 | 0.5004 |
0.387 | 1.27 | 11900 | 0.5785 | 0.5220 |
0.3956 | 1.28 | 12000 | 0.5990 | 0.5114 |
0.3956 | 1.3 | 12100 | 0.5497 | 0.4895 |
0.3956 | 1.31 | 12200 | 0.5538 | 0.4895 |
0.3956 | 1.32 | 12300 | 0.5652 | 0.4913 |
0.3956 | 1.33 | 12400 | 0.5682 | 0.5128 |
0.4043 | 1.34 | 12500 | 0.5830 | 0.4999 |
0.4043 | 1.35 | 12600 | 0.5686 | 0.4865 |
0.4043 | 1.36 | 12700 | 0.5688 | 0.4937 |
0.4043 | 1.37 | 12800 | 0.5753 | 0.5034 |
0.4043 | 1.38 | 12900 | 0.5898 | 0.4865 |
0.3997 | 1.39 | 13000 | 0.5723 | 0.4963 |
0.3997 | 1.4 | 13100 | 0.5767 | 0.4986 |
0.3997 | 1.41 | 13200 | 0.5960 | 0.5084 |
0.3997 | 1.42 | 13300 | 0.5859 | 0.5096 |
0.3997 | 1.43 | 13400 | 0.5491 | 0.4784 |
0.3997 | 1.45 | 13500 | 0.5636 | 0.5049 |
0.3997 | 1.46 | 13600 | 0.5667 | 0.4708 |
0.3997 | 1.47 | 13700 | 0.5757 | 0.4862 |
0.3997 | 1.48 | 13800 | 0.5444 | 0.4816 |
0.3997 | 1.49 | 13900 | 0.5557 | 0.4792 |
0.3954 | 1.5 | 14000 | 0.5437 | 0.4810 |
0.3954 | 1.51 | 14100 | 0.5489 | 0.4674 |
0.3954 | 1.52 | 14200 | 0.5415 | 0.4674 |
0.3954 | 1.53 | 14300 | 0.5481 | 0.4902 |
0.3954 | 1.54 | 14400 | 0.5474 | 0.4763 |
0.3814 | 1.55 | 14500 | 0.5588 | 0.4731 |
0.3814 | 1.56 | 14600 | 0.5746 | 0.4820 |
0.3814 | 1.57 | 14700 | 0.5676 | 0.4884 |
0.3814 | 1.58 | 14800 | 0.5495 | 0.4711 |
0.3814 | 1.6 | 14900 | 0.5565 | 0.4782 |
0.3877 | 1.61 | 15000 | 0.5671 | 0.5135 |
0.3877 | 1.62 | 15100 | 0.5512 | 0.4868 |
0.3877 | 1.63 | 15200 | 0.5683 | 0.4650 |
0.3877 | 1.64 | 15300 | 0.5427 | 0.4717 |
0.3877 | 1.65 | 15400 | 0.5519 | 0.4651 |
0.387 | 1.66 | 15500 | 0.5327 | 0.4456 |
0.387 | 1.67 | 15600 | 0.5371 | 0.4673 |
0.387 | 1.68 | 15700 | 0.5337 | 0.4705 |
0.387 | 1.69 | 15800 | 0.5606 | 0.4992 |
0.387 | 1.7 | 15900 | 0.5254 | 0.4613 |
0.3877 | 1.71 | 16000 | 0.5619 | 0.4882 |
0.3877 | 1.72 | 16100 | 0.5212 | 0.4560 |
0.3877 | 1.73 | 16200 | 0.5369 | 0.4696 |
0.3877 | 1.75 | 16300 | 0.5392 | 0.4677 |
0.3877 | 1.76 | 16400 | 0.5353 | 0.4768 |
0.3739 | 1.77 | 16500 | 0.5435 | 0.4777 |
0.3739 | 1.78 | 16600 | 0.5343 | 0.4884 |
0.3739 | 1.79 | 16700 | 0.5309 | 0.4942 |
0.3739 | 1.8 | 16800 | 0.5373 | 0.4727 |
0.3739 | 1.81 | 16900 | 0.5550 | 0.4686 |
0.3884 | 1.82 | 17000 | 0.5486 | 0.4826 |
0.3884 | 1.83 | 17100 | 0.5508 | 0.4862 |
0.3884 | 1.84 | 17200 | 0.5423 | 0.4855 |
0.3884 | 1.85 | 17300 | 0.5478 | 0.4730 |
0.3884 | 1.86 | 17400 | 0.5438 | 0.4938 |
0.3842 | 1.87 | 17500 | 0.5571 | 0.4818 |
0.3842 | 1.88 | 17600 | 0.5402 | 0.4753 |
0.3842 | 1.9 | 17700 | 0.5679 | 0.4827 |
0.3842 | 1.91 | 17800 | 0.5385 | 0.4642 |
0.3842 | 1.92 | 17900 | 0.5519 | 0.4942 |
0.3953 | 1.93 | 18000 | 0.5559 | 0.4745 |
0.3953 | 1.94 | 18100 | 0.5657 | 0.4963 |
0.3953 | 1.95 | 18200 | 0.5296 | 0.4642 |
0.3953 | 1.96 | 18300 | 0.5529 | 0.4907 |
0.3953 | 1.97 | 18400 | 0.5380 | 0.4536 |
0.3745 | 1.98 | 18500 | 0.5276 | 0.4678 |
0.3745 | 1.99 | 18600 | 0.5544 | 0.4854 |
0.3745 | 2.0 | 18700 | 0.5195 | 0.4535 |
0.3745 | 2.01 | 18800 | 0.5165 | 0.4635 |
0.3745 | 2.02 | 18900 | 0.5062 | 0.4431 |
0.3538 | 2.03 | 19000 | 0.5255 | 0.4509 |
0.3538 | 2.04 | 19100 | 0.5125 | 0.4512 |
0.3538 | 2.06 | 19200 | 0.5105 | 0.4504 |
0.3538 | 2.07 | 19300 | 0.5000 | 0.4490 |
0.3538 | 2.08 | 19400 | 0.5150 | 0.4520 |
0.356 | 2.09 | 19500 | 0.5053 | 0.4383 |
0.356 | 2.1 | 19600 | 0.5085 | 0.4417 |
0.356 | 2.11 | 19700 | 0.5229 | 0.4490 |
0.356 | 2.12 | 19800 | 0.5326 | 0.4492 |
0.356 | 2.13 | 19900 | 0.5139 | 0.4491 |
0.3474 | 2.14 | 20000 | 0.5134 | 0.4384 |
0.3474 | 2.15 | 20100 | 0.5498 | 0.4606 |
0.3474 | 2.16 | 20200 | 0.5324 | 0.4540 |
0.3474 | 2.17 | 20300 | 0.5338 | 0.4548 |
0.3474 | 2.18 | 20400 | 0.5076 | 0.4425 |
0.345 | 2.19 | 20500 | 0.5253 | 0.4550 |
0.345 | 2.21 | 20600 | 0.5125 | 0.4618 |
0.345 | 2.22 | 20700 | 0.5171 | 0.4487 |
0.345 | 2.23 | 20800 | 0.5232 | 0.4464 |
0.345 | 2.24 | 20900 | 0.5298 | 0.4588 |
0.341 | 2.25 | 21000 | 0.5342 | 0.4576 |
0.341 | 2.26 | 21100 | 0.5515 | 0.4678 |
0.341 | 2.27 | 21200 | 0.5041 | 0.4495 |
0.341 | 2.28 | 21300 | 0.5169 | 0.4473 |
0.341 | 2.29 | 21400 | 0.5227 | 0.4494 |
0.354 | 2.3 | 21500 | 0.5214 | 0.4458 |
0.354 | 2.31 | 21600 | 0.5303 | 0.4587 |
0.354 | 2.32 | 21700 | 0.5237 | 0.4597 |
0.354 | 2.33 | 21800 | 0.5067 | 0.4460 |
0.354 | 2.34 | 21900 | 0.5117 | 0.4560 |
0.3333 | 2.36 | 22000 | 0.5104 | 0.4359 |
0.3333 | 2.37 | 22100 | 0.5326 | 0.4679 |
0.3333 | 2.38 | 22200 | 0.5098 | 0.4510 |
0.3333 | 2.39 | 22300 | 0.5044 | 0.4445 |
0.3333 | 2.4 | 22400 | 0.5219 | 0.4489 |
0.3514 | 2.41 | 22500 | 0.4987 | 0.4433 |
0.3514 | 2.42 | 22600 | 0.5009 | 0.4338 |
0.3514 | 2.43 | 22700 | 0.5252 | 0.4444 |
0.3514 | 2.44 | 22800 | 0.4861 | 0.4269 |
0.3514 | 2.45 | 22900 | 0.5157 | 0.4421 |
0.3444 | 2.46 | 23000 | 0.5277 | 0.4426 |
0.3444 | 2.47 | 23100 | 0.5213 | 0.4378 |
0.3444 | 2.48 | 23200 | 0.5172 | 0.4482 |
0.3444 | 2.49 | 23300 | 0.5142 | 0.4376 |
0.3444 | 2.51 | 23400 | 0.5044 | 0.4231 |
0.3536 | 2.52 | 23500 | 0.5268 | 0.4496 |
0.3536 | 2.53 | 23600 | 0.5176 | 0.4326 |
0.3536 | 2.54 | 23700 | 0.5032 | 0.4296 |
0.3536 | 2.55 | 23800 | 0.5211 | 0.4460 |
0.3536 | 2.56 | 23900 | 0.5093 | 0.4379 |
0.337 | 2.57 | 24000 | 0.4990 | 0.4311 |
0.337 | 2.58 | 24100 | 0.4962 | 0.4329 |
0.337 | 2.59 | 24200 | 0.5033 | 0.4289 |
0.337 | 2.6 | 24300 | 0.5260 | 0.4534 |
0.337 | 2.61 | 24400 | 0.5309 | 0.4441 |
0.3393 | 2.62 | 24500 | 0.5132 | 0.4346 |
0.3393 | 2.63 | 24600 | 0.5189 | 0.4233 |
0.3393 | 2.64 | 24700 | 0.5074 | 0.4326 |
0.3393 | 2.66 | 24800 | 0.5111 | 0.4254 |
0.3393 | 2.67 | 24900 | 0.4933 | 0.4254 |
0.3334 | 2.68 | 25000 | 0.5046 | 0.4407 |
0.3334 | 2.69 | 25100 | 0.5010 | 0.4404 |
0.3334 | 2.7 | 25200 | 0.5045 | 0.4236 |
0.3334 | 2.71 | 25300 | 0.4938 | 0.4305 |
0.3334 | 2.72 | 25400 | 0.5021 | 0.4383 |
0.3366 | 2.73 | 25500 | 0.4953 | 0.4202 |
0.3366 | 2.74 | 25600 | 0.4985 | 0.4338 |
0.3366 | 2.75 | 25700 | 0.4765 | 0.4161 |
0.3366 | 2.76 | 25800 | 0.4873 | 0.4292 |
0.3366 | 2.77 | 25900 | 0.4998 | 0.4189 |
0.3359 | 2.78 | 26000 | 0.4991 | 0.4248 |
0.3359 | 2.79 | 26100 | 0.5012 | 0.4307 |
0.3359 | 2.81 | 26200 | 0.5081 | 0.4151 |
0.3359 | 2.82 | 26300 | 0.4997 | 0.4305 |
0.3359 | 2.83 | 26400 | 0.4969 | 0.4302 |
0.3396 | 2.84 | 26500 | 0.4784 | 0.4271 |
0.3396 | 2.85 | 26600 | 0.4804 | 0.4149 |
0.3396 | 2.86 | 26700 | 0.4900 | 0.4192 |
0.3396 | 2.87 | 26800 | 0.5044 | 0.4325 |
0.3396 | 2.88 | 26900 | 0.4935 | 0.4376 |
0.3356 | 2.89 | 27000 | 0.5007 | 0.4269 |
0.3356 | 2.9 | 27100 | 0.4887 | 0.4178 |
0.3356 | 2.91 | 27200 | 0.4770 | 0.4170 |
0.3356 | 2.92 | 27300 | 0.4847 | 0.4167 |
0.3356 | 2.93 | 27400 | 0.4861 | 0.4139 |
0.3395 | 2.94 | 27500 | 0.4975 | 0.4291 |
0.3395 | 2.95 | 27600 | 0.5056 | 0.4471 |
0.3395 | 2.97 | 27700 | 0.5111 | 0.4375 |
0.3395 | 2.98 | 27800 | 0.5327 | 0.4577 |
0.3395 | 2.99 | 27900 | 0.5067 | 0.4393 |
0.3332 | 3.0 | 28000 | 0.4898 | 0.4188 |
0.3332 | 3.01 | 28100 | 0.4790 | 0.4093 |
0.3332 | 3.02 | 28200 | 0.4828 | 0.4202 |
0.3332 | 3.03 | 28300 | 0.4836 | 0.4146 |
0.3332 | 3.04 | 28400 | 0.4901 | 0.4242 |
0.2984 | 3.05 | 28500 | 0.4772 | 0.4118 |
0.2984 | 3.06 | 28600 | 0.5055 | 0.4213 |
0.2984 | 3.07 | 28700 | 0.4911 | 0.4100 |
0.2984 | 3.08 | 28800 | 0.4737 | 0.4087 |
0.2984 | 3.09 | 28900 | 0.4930 | 0.4216 |
0.3056 | 3.1 | 29000 | 0.4736 | 0.4109 |
0.3056 | 3.12 | 29100 | 0.4863 | 0.4058 |
0.3056 | 3.13 | 29200 | 0.4784 | 0.4184 |
0.3056 | 3.14 | 29300 | 0.4923 | 0.4240 |
0.3056 | 3.15 | 29400 | 0.4846 | 0.4226 |
0.2995 | 3.16 | 29500 | 0.4829 | 0.4086 |
0.2995 | 3.17 | 29600 | 0.4934 | 0.4240 |
0.2995 | 3.18 | 29700 | 0.4893 | 0.4152 |
0.2995 | 3.19 | 29800 | 0.4730 | 0.4227 |
0.2995 | 3.2 | 29900 | 0.5027 | 0.4330 |
0.2926 | 3.21 | 30000 | 0.4903 | 0.4112 |
📄 许可证
该模型采用 Apache 2.0 许可证。
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别 支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers 支持多种语言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别 日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers 支持多种语言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别 阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98