Wav2vec2 Speechdat
W
Wav2vec2 Speechdat
Developed by birgermoell
This model is a Swedish automatic speech recognition model fine-tuned on the COMMON_VOICE - SV-SE dataset based on facebook/wav2vec2-large-xlsr-53.
Downloads 29
Release Time : 3/2/2022
Model Overview
This is an automatic speech recognition (ASR) model for Swedish, based on the wav2vec2 architecture and fine-tuned on the Common Voice Swedish dataset.
Model Features
Swedish optimization
Specially fine-tuned for Swedish, performing well on Swedish speech recognition tasks
Based on wav2vec2 architecture
Uses facebook's wav2vec2-large-xlsr-53 as the base model, with powerful speech feature extraction capabilities
Trained on Common Voice dataset
Trained using the high-quality Common Voice Swedish dataset
Model Capabilities
Swedish speech recognition
Speech-to-text
Use Cases
Speech transcription
Swedish speech transcription
Convert Swedish speech content to text
Achieved a word error rate (WER) of 0.2927 on the evaluation set
Voice assistant
Swedish voice command recognition
Used for command recognition in Swedish voice assistant systems
đ wav2vec2-speechdat
This is a fine-tuned model for automatic speech recognition. It is based on the facebook/wav2vec2-large-xlsr-53 model and trained on the COMMON_VOICE - SV-SE dataset, achieving good results on the evaluation set.
đ Quick Start
This model can be used directly for Swedish automatic speech recognition tasks. You can load the model through the Hugging Face Transformers library and perform inference.
⨠Features
- Fine-tuned on Swedish data: Trained on the COMMON_VOICE - SV-SE dataset, it has better performance on Swedish speech recognition.
- Good evaluation results: Achieves a loss of 0.4578 and a WER of 0.2927 on the evaluation set.
đ Documentation
Model Information
Property | Details |
---|---|
Model Type | Fine-tuned version of facebook/wav2vec2-large-xlsr-53 |
Training Data | COMMON_VOICE - SV-SE dataset |
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
Training Results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.01 | 100 | 3.6252 | 1.0 |
No log | 0.02 | 200 | 3.1906 | 1.0 |
No log | 0.03 | 300 | 3.1090 | 1.0 |
No log | 0.04 | 400 | 1.8796 | 0.9955 |
6.2575 | 0.05 | 500 | 1.3515 | 0.9058 |
6.2575 | 0.06 | 600 | 1.1209 | 0.8328 |
6.2575 | 0.07 | 700 | 1.1404 | 0.8309 |
6.2575 | 0.09 | 800 | 1.0599 | 0.8021 |
6.2575 | 0.1 | 900 | 0.9901 | 0.8335 |
0.7737 | 0.11 | 1000 | 0.8846 | 0.7400 |
0.7737 | 0.12 | 1100 | 0.9971 | 0.7820 |
0.7737 | 0.13 | 1200 | 0.8665 | 0.7123 |
0.7737 | 0.14 | 1300 | 0.8490 | 0.7366 |
0.7737 | 0.15 | 1400 | 0.8250 | 0.6765 |
0.6183 | 0.16 | 1500 | 0.8291 | 0.6965 |
0.6183 | 0.17 | 1600 | 0.7946 | 0.6823 |
0.6183 | 0.18 | 1700 | 0.8239 | 0.6894 |
0.6183 | 0.19 | 1800 | 0.8282 | 0.6796 |
0.6183 | 0.2 | 1900 | 0.7645 | 0.6518 |
0.561 | 0.21 | 2000 | 0.7530 | 0.6367 |
0.561 | 0.22 | 2100 | 0.7296 | 0.6177 |
0.561 | 0.24 | 2200 | 0.7527 | 0.6498 |
0.561 | 0.25 | 2300 | 0.7210 | 0.6316 |
0.561 | 0.26 | 2400 | 0.7938 | 0.6757 |
0.5402 | 0.27 | 2500 | 0.7485 | 0.6372 |
0.5402 | 0.28 | 2600 | 0.7146 | 0.6133 |
0.5402 | 0.29 | 2700 | 0.7308 | 0.6626 |
0.5402 | 0.3 | 2800 | 0.7078 | 0.5949 |
0.5402 | 0.31 | 2900 | 0.7679 | 0.6373 |
0.5303 | 0.32 | 3000 | 0.7263 | 0.6502 |
0.5303 | 0.33 | 3100 | 0.6613 | 0.5846 |
0.5303 | 0.34 | 3200 | 0.6784 | 0.5783 |
0.5303 | 0.35 | 3300 | 0.6908 | 0.5833 |
0.5303 | 0.36 | 3400 | 0.6595 | 0.5826 |
0.503 | 0.37 | 3500 | 0.6717 | 0.5938 |
0.503 | 0.39 | 3600 | 0.6938 | 0.5791 |
0.503 | 0.4 | 3700 | 0.6677 | 0.6052 |
0.503 | 0.41 | 3800 | 0.6544 | 0.5554 |
0.503 | 0.42 | 3900 | 0.6514 | 0.5728 |
0.4959 | 0.43 | 4000 | 0.6847 | 0.6188 |
0.4959 | 0.44 | 4100 | 0.6626 | 0.5869 |
0.4959 | 0.45 | 4200 | 0.6670 | 0.5700 |
0.4959 | 0.46 | 4300 | 0.6596 | 0.5846 |
0.4959 | 0.47 | 4400 | 0.6523 | 0.5468 |
0.4824 | 0.48 | 4500 | 0.6392 | 0.5688 |
0.4824 | 0.49 | 4600 | 0.6561 | 0.5687 |
0.4824 | 0.5 | 4700 | 0.6697 | 0.5817 |
0.4824 | 0.51 | 4800 | 0.6348 | 0.5608 |
0.4824 | 0.52 | 4900 | 0.6561 | 0.5600 |
0.4714 | 0.54 | 5000 | 0.6522 | 0.6181 |
0.4714 | 0.55 | 5100 | 0.6858 | 0.5921 |
0.4714 | 0.56 | 5200 | 0.6706 | 0.5497 |
0.4714 | 0.57 | 5300 | 0.7123 | 0.5768 |
0.4714 | 0.58 | 5400 | 0.6599 | 0.6100 |
0.471 | 0.59 | 5500 | 0.6421 | 0.5626 |
0.471 | 0.6 | 5600 | 0.6395 | 0.5753 |
0.471 | 0.61 | 5700 | 0.6788 | 0.5481 |
0.471 | 0.62 | 5800 | 0.6386 | 0.5516 |
0.471 | 0.63 | 5900 | 0.6694 | 0.5913 |
0.4707 | 0.64 | 6000 | 0.6251 | 0.5699 |
0.4707 | 0.65 | 6100 | 0.6243 | 0.5567 |
0.4707 | 0.66 | 6200 | 0.6645 | 0.5629 |
0.4707 | 0.67 | 6300 | 0.6296 | 0.5895 |
0.4707 | 0.69 | 6400 | 0.6078 | 0.5183 |
0.4632 | 0.7 | 6500 | 0.6270 | 0.5619 |
0.4632 | 0.71 | 6600 | 0.6050 | 0.5336 |
0.4632 | 0.72 | 6700 | 0.6185 | 0.5449 |
0.4632 | 0.73 | 6800 | 0.6281 | 0.5645 |
0.4632 | 0.74 | 6900 | 0.5877 | 0.5084 |
0.4514 | 0.75 | 7000 | 0.6199 | 0.5403 |
0.4514 | 0.76 | 7100 | 0.6293 | 0.5275 |
0.4514 | 0.77 | 7200 | 0.6290 | 0.5447 |
0.4514 | 0.78 | 7300 | 0.6130 | 0.5373 |
0.4514 | 0.79 | 7400 | 0.6138 | 0.5285 |
0.4457 | 0.8 | 7500 | 0.6040 | 0.5259 |
0.4457 | 0.81 | 7600 | 0.6220 | 0.5686 |
0.4457 | 0.82 | 7700 | 0.5915 | 0.5164 |
0.4457 | 0.84 | 7800 | 0.6270 | 0.5289 |
0.4457 | 0.85 | 7900 | 0.6224 | 0.5515 |
0.4458 | 0.86 | 8000 | 0.6161 | 0.5323 |
0.4458 | 0.87 | 8100 | 0.5827 | 0.5122 |
0.4458 | 0.88 | 8200 | 0.6067 | 0.5202 |
0.4458 | 0.89 | 8300 | 0.6087 | 0.5192 |
0.4458 | 0.9 | 8400 | 0.6859 | 0.5796 |
0.4409 | 0.91 | 8500 | 0.6180 | 0.5131 |
0.4409 | 0.92 | 8600 | 0.5945 | 0.4948 |
0.4409 | 0.93 | 8700 | 0.5967 | 0.5532 |
0.4409 | 0.94 | 8800 | 0.5770 | 0.4961 |
0.4409 | 0.95 | 8900 | 0.5809 | 0.5203 |
0.4305 | 0.96 | 9000 | 0.5805 | 0.5039 |
0.4305 | 0.97 | 9100 | 0.5873 | 0.5188 |
0.4305 | 0.98 | 9200 | 0.6277 | 0.5516 |
0.4305 | 1.0 | 9300 | 0.5727 | 0.5052 |
0.4305 | 1.01 | 9400 | 0.5858 | 0.5123 |
0.4264 | 1.02 | 9500 | 0.5692 | 0.4968 |
0.4264 | 1.03 | 9600 | 0.5954 | 0.5117 |
0.4264 | 1.04 | 9700 | 0.5904 | 0.5076 |
0.4264 | 1.05 | 9800 | 0.6046 | 0.5101 |
0.4264 | 1.06 | 9900 | 0.5616 | 0.4926 |
0.4176 | 1.07 | 10000 | 0.5971 | 0.5368 |
0.4176 | 1.08 | 10100 | 0.5706 | 0.4940 |
0.4176 | 1.09 | 10200 | 0.5612 | 0.5032 |
0.4176 | 1.1 | 10300 | 0.5672 | 0.4944 |
0.4176 | 1.11 | 10400 | 0.5915 | 0.5218 |
0.4033 | 1.12 | 10500 | 0.5706 | 0.5051 |
0.4033 | 1.13 | 10600 | 0.5661 | 0.4934 |
0.4033 | 1.15 | 10700 | 0.5724 | 0.4903 |
0.4033 | 1.16 | 10800 | 0.5792 | 0.4940 |
0.4033 | 1.17 | 10900 | 0.5744 | 0.4911 |
0.392 | 1.18 | 11000 | 0.5767 | 0.5162 |
0.392 | 1.19 | 11100 | 0.5588 | 0.4835 |
0.392 | 1.2 | 11200 | 0.5609 | 0.4922 |
0.392 | 1.21 | 11300 | 0.5890 | 0.4914 |
0.392 | 1.22 | 11400 | 0.5525 | 0.4897 |
0.387 | 1.23 | 11500 | 0.5704 | 0.5051 |
0.387 | 1.24 | 11600 | 0.5539 | 0.5014 |
0.387 | 1.25 | 11700 | 0.5473 | 0.4882 |
0.387 | 1.26 | 11800 | 0.5662 | 0.5004 |
0.387 | 1.27 | 11900 | 0.5785 | 0.5220 |
0.3956 | 1.28 | 12000 | 0.5990 | 0.5114 |
0.3956 | 1.3 | 12100 | 0.5497 | 0.4895 |
0.3956 | 1.31 | 12200 | 0.5538 | 0.4895 |
0.3956 | 1.32 | 12300 | 0.5652 | 0.4913 |
0.3956 | 1.33 | 12400 | 0.5682 | 0.5128 |
0.4043 | 1.34 | 12500 | 0.5830 | 0.4999 |
0.4043 | 1.35 | 12600 | 0.5686 | 0.4865 |
0.4043 | 1.36 | 12700 | 0.5688 | 0.4937 |
0.4043 | 1.37 | 12800 | 0.5753 | 0.5034 |
0.4043 | 1.38 | 12900 | 0.5898 | 0.4865 |
0.3997 | 1.39 | 13000 | 0.5723 | 0.4963 |
0.3997 | 1.4 | 13100 | 0.5767 | 0.4986 |
0.3997 | 1.41 | 13200 | 0.5960 | 0.5084 |
0.3997 | 1.42 | 13300 | 0.5859 | 0.5096 |
0.3997 | 1.43 | 13400 | 0.5491 | 0.4784 |
0.3997 | 1.45 | 13500 | 0.5636 | 0.5049 |
0.3997 | 1.46 | 13600 | 0.5667 | 0.4708 |
0.3997 | 1.47 | 13700 | 0.5757 | 0.4862 |
0.3997 | 1.48 | 13800 | 0.5444 | 0.4816 |
0.3997 | 1.49 | 13900 | 0.5557 | 0.4792 |
0.3954 | 1.5 | 14000 | 0.5437 | 0.4810 |
0.3954 | 1.51 | 14100 | 0.5489 | 0.4674 |
0.3954 | 1.52 | 14200 | 0.5415 | 0.4674 |
0.3954 | 1.53 | 14300 | 0.5481 | 0.4902 |
0.3954 | 1.54 | 14400 | 0.5474 | 0.4763 |
0.3814 | 1.55 | 14500 | 0.5588 | 0.4731 |
0.3814 | 1.56 | 14600 | 0.5746 | 0.4820 |
0.3814 | 1.57 | 14700 | 0.5676 | 0.4884 |
0.3814 | 1.58 | 14800 | 0.5495 | 0.4711 |
0.3814 | 1.6 | 14900 | 0.5565 | 0.4782 |
0.3877 | 1.61 | 15000 | 0.5671 | 0.5135 |
0.3877 | 1.62 | 15100 | 0.5512 | 0.4868 |
0.3877 | 1.63 | 15200 | 0.5683 | 0.4650 |
0.3877 | 1.64 | 15300 | 0.5427 | 0.4717 |
0.3877 | 1.65 | 15400 | 0.5519 | 0.4651 |
0.387 | 1.66 | 15500 | 0.5327 | 0.4456 |
0.387 | 1.67 | 15600 | 0.5371 | 0.4673 |
0.387 | 1.68 | 15700 | 0.5337 | 0.4705 |
0.387 | 1.69 | 15800 | 0.5606 | 0.4992 |
0.387 | 1.7 | 15900 | 0.5254 | 0.4613 |
0.3877 | 1.71 | 16000 | 0.5619 | 0.4882 |
0.3877 | 1.72 | 16100 | 0.5212 | 0.4560 |
0.3877 | 1.73 | 16200 | 0.5369 | 0.4696 |
0.3877 | 1.75 | 16300 | 0.5392 | 0.4677 |
0.3877 | 1.76 | 16400 | 0.5353 | 0.4768 |
0.3739 | 1.77 | 16500 | 0.5435 | 0.4777 |
0.3739 | 1.78 | 16600 | 0.5343 | 0.4884 |
0.3739 | 1.79 | 16700 | 0.5309 | 0.4942 |
0.3739 | 1.8 | 16800 | 0.5373 | 0.4727 |
0.3739 | 1.81 | 16900 | 0.5550 | 0.4686 |
0.3884 | 1.82 | 17000 | 0.5486 | 0.4826 |
0.3884 | 1.83 | 17100 | 0.5508 | 0.4862 |
0.3884 | 1.84 | 17200 | 0.5423 | 0.4855 |
0.3884 | 1.85 | 17300 | 0.5478 | 0.4730 |
0.3884 | 1.86 | 17400 | 0.5438 | 0.4938 |
0.3842 | 1.87 | 17500 | 0.5571 | 0.4818 |
0.3842 | 1.88 | 17600 | 0.5402 | 0.4753 |
0.3842 | 1.9 | 17700 | 0.5679 | 0.4827 |
0.3842 | 1.91 | 17800 | 0.5385 | 0.4642 |
0.3842 | 1.92 | 17900 | 0.5519 | 0.4942 |
0.3953 | 1.93 | 18000 | 0.5559 | 0.4745 |
0.3953 | 1.94 | 18100 | 0.5657 | 0.4963 |
0.3953 | 1.95 | 18200 | 0.5296 | 0.4642 |
0.3953 | 1.96 | 18300 | 0.5529 | 0.4907 |
0.3953 | 1.97 | 18400 | 0.5380 | 0.4536 |
0.3745 | 1.98 | 18500 | 0.5276 | 0.4678 |
0.3745 | 1.99 | 18600 | 0.5544 | 0.4854 |
0.3745 | 2.0 | 18700 | 0.5195 | 0.4535 |
0.3745 | 2.01 | 18800 | 0.5494 | 0.4740 |
0.3745 | 2.02 | 18900 | 0.5359 | 0.4673 |
0.3745 | 2.03 | 19000 | 0.5312 | 0.4568 |
0.3745 | 2.04 | 19100 | 0.5397 | 0.4626 |
0.3745 | 2.05 | 19200 | 0.5331 | 0.4697 |
0.3745 | 2.06 | 19300 | 0.5288 | 0.4609 |
0.3745 | 2.07 | 19400 | 0.5361 | 0.4639 |
0.3745 | 2.08 | 19500 | 0.5233 | 0.4587 |
0.3745 | 2.09 | 19600 | 0.5303 | 0.4670 |
0.3745 | 2.1 | 19700 | 0.5224 | 0.4539 |
0.3745 | 2.11 | 19800 | 0.5327 | 0.4618 |
0.3745 | 2.12 | 19900 | 0.5263 | 0.4562 |
0.3745 | 2.13 | 20000 | 0.5222 | 0.4530 |
đ License
This model is licensed under the Apache 2.0 license.
Voice Activity Detection
MIT
Voice activity detection model based on pyannote.audio 2.1, used to identify speech activity segments in audio
Speech Recognition
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
This is a fine-tuned XLSR-53 large model for Portuguese speech recognition tasks, trained on the Common Voice 6.1 dataset, supporting Portuguese speech-to-text conversion.
Speech Recognition Other
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper is an advanced automatic speech recognition (ASR) and speech translation model proposed by OpenAI, trained on over 5 million hours of labeled data, with strong cross-dataset and cross-domain generalization capabilities.
Speech Recognition Supports Multiple Languages
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper is a state-of-the-art automatic speech recognition (ASR) and speech translation model developed by OpenAI, trained on over 5 million hours of labeled data, demonstrating strong generalization capabilities in zero-shot settings.
Speech Recognition
Transformers Supports Multiple Languages

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
A Russian speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampled audio input
Speech Recognition Other
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
A Chinese speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input.
Speech Recognition Chinese
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
A Dutch speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, trained on the Common Voice and CSS10 datasets, supporting 16kHz audio input.
Speech Recognition Other
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
Japanese speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input
Speech Recognition Japanese
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
A text-to-audio forced alignment tool based on Hugging Face pre-trained models, supporting multiple languages with high memory efficiency
Speech Recognition
Transformers Supports Multiple Languages

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
Arabic speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, trained on Common Voice and Arabic speech corpus
Speech Recognition Arabic
W
jonatasgrosman
2.3M
37
Featured Recommended AI Models
Š 2025AIbase