Text2tags
基于28,000篇新闻文章训练的意大利语模型,用于生成文章标签或摘要,支持信息检索任务
下载量 170
发布时间 : 3/2/2022
模型简介
该模型能够根据输入的意大利语文本自动生成相关标签,适用于摘要生成、标签提取和信息检索等任务。
模型特点
多任务支持
可同时处理摘要生成和标签提取任务
长文档处理
提供分段处理功能,可有效处理长文本输入
信息检索兼容
支持通过微调实现非对称语义搜索
模型能力
意大利语文本处理
自动标签生成
文本摘要生成
信息检索支持
使用案例
新闻媒体
新闻文章标签化
为新闻文章自动生成分类标签
提高内容分类和检索效率
内容管理
文档摘要生成
从长文档中提取关键信息生成摘要
快速理解文档主要内容
🚀 text2tags
text2tags模型在包含标签的28000篇新闻文章集合上进行了训练。其目的是为给定的文章创建合适的标签。我们还可以将此模型用于信息检索(GenQ),对句子转换器进行微调以用于非对称语义搜索。
Pieter Bruegel the Elder, The Fight Between Carnival and Lent, 1559
🚀 快速开始
模型概述
属性 | 详情 |
---|---|
模型类型 | T5 (it5-small) |
语言 | 意大利语 |
下游任务 | 摘要生成(用于主题标签) |
训练数据 | 自定义数据集 |
代码 | 见示例 |
基础设施 | 1x T4 |
💻 使用示例
基础用法
以下是使用IlPost的一篇文章的示例代码:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("efederici/text2tags")
tokenizer = AutoTokenizer.from_pretrained("efederici/text2tags")
article = '''
Da bambino era preoccupato che al mondo non ci fosse più nulla da scoprire. Ma i suoi stessi studi gli avrebbero dato torto: insieme a James Watson, nel 1953 Francis Crick strutturò il primo modello di DNA, la lunga sequenza di codici che identifica ogni essere vivente, rendendolo unico e diverso da tutti gli altri.
La scoperta gli valse il Nobel per la Medicina. È uscita in queste settimane per Codice la sua biografia, Francis Crick — Lo scopritore del DNA, scritta da Matt Ridley, che racconta vita e scienza dell'uomo che capì perché siamo fatti così.
'''
def tag(text: str):
""" Generates tags from given text """
text = text.strip().replace('\n', '')
text = 'summarize: ' + text
tokenized_text = tokenizer.encode(text, return_tensors="pt")
tags_ids = model.generate(tokenized_text,
num_beams=4,
no_repeat_ngram_size=2,
max_length=20,
early_stopping=True)
output = tokenizer.decode(tags_ids[0], skip_special_tokens=True)
return output.split(', ')
tags = tag(article)
print(tags)
高级用法
处理较长文档时,假设段落以\n\n
分隔:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import itertools
import re
model = AutoModelForSeq2SeqLM.from_pretrained("efederici/text2tags")
tokenizer = AutoTokenizer.from_pretrained("efederici/text2tags")
article = '''
Da bambino era preoccupato che al mondo non ci fosse più nulla da scoprire. Ma i suoi stessi studi gli avrebbero dato torto: insieme a James Watson, nel 1953 Francis Crick strutturò il primo modello di DNA, la lunga sequenza di codici che identifica ogni essere vivente, rendendolo unico e diverso da tutti gli altri.
La scoperta gli valse il Nobel per la Medicina. È uscita in queste settimane per Codice la sua biografia, Francis Crick — Lo scopritore del DNA, scritta da Matt Ridley, che racconta vita e scienza dell'uomo che capì perché siamo fatti così.
'''
def words(text):
input_str = text
output_str = re.sub('[^A-Za-z0-9]+', ' ', input_str)
return output_str.split()
def is_subset(text1, text2):
return all(tag in words(text1.lower()) for tag in text2.split())
def cleaning(text, tags):
return [tag for tag in tags if is_subset(text, tag)]
def get_texts(text, max_len):
texts = list(filter(lambda x : x != '', text.split('\n\n')))
lengths = [len(tokenizer.encode(paragraph)) for paragraph in texts]
output = []
for i, par in enumerate(texts):
index = len(output)
if index > 0 and lengths[i] + len(tokenizer.encode(output[index-1])) <= max_len:
output[index-1] = "".join(output[index-1] + par)
else:
output.append(par)
return output
def get_tags(text, generate_kwargs):
input_text = 'summarize: ' + text.strip().replace('\n', ' ')
tokenized_text = tokenizer.encode(input_text, return_tensors="pt")
with torch.no_grad():
tags_ids = model.generate(tokenized_text, **generate_kwargs)
output = []
for tags in tags_ids:
cleaned = cleaning(
text,
list(set(tokenizer.decode(tags, skip_special_tokens=True).split(', ')))
)
output.append(cleaned)
return list(set(itertools.chain(*output)))
def tag(text, max_len, generate_kwargs):
texts = get_texts(text, max_len)
all_tags = [get_tags(text, generate_kwargs) for text in texts]
flatten_tags = itertools.chain(*all_tags)
return list(set(flatten_tags))
params = {
"min_length": 0,
"max_length": 30,
"no_repeat_ngram_size": 2,
"num_beams": 4,
"early_stopping": True,
"num_return_sequences": 4,
}
tags = tag(article, 512, params)
print(tags)
Bart Large Cnn
MIT
基于英语语料预训练的BART模型,专门针对CNN每日邮报数据集进行微调,适用于文本摘要任务
文本生成 英语
B
facebook
3.8M
1,364
Parrot Paraphraser On T5
Parrot是一个基于T5的释义框架,专为加速训练自然语言理解(NLU)模型而设计,通过生成高质量释义实现数据增强。
文本生成
Transformers

P
prithivida
910.07k
152
Distilbart Cnn 12 6
Apache-2.0
DistilBART是BART模型的蒸馏版本,专门针对文本摘要任务进行了优化,在保持较高性能的同时显著提升了推理速度。
文本生成 英语
D
sshleifer
783.96k
278
T5 Base Summarization Claim Extractor
基于T5架构的模型,专门用于从摘要文本中提取原子声明,是摘要事实性评估流程的关键组件。
文本生成
Transformers 英语

T
Babelscape
666.36k
9
Unieval Sum
UniEval是一个统一的多维评估器,用于自然语言生成任务的自动评估,支持多个可解释维度的评估。
文本生成
Transformers

U
MingZhong
318.08k
3
Pegasus Paraphrase
Apache-2.0
基于PEGASUS架构微调的文本复述模型,能够生成语义相同但表达不同的句子。
文本生成
Transformers 英语

P
tuner007
209.03k
185
T5 Base Korean Summarization
这是一个基于T5架构的韩语文本摘要模型,专为韩语文本摘要任务设计,通过微调paust/pko-t5-base模型在多个韩语数据集上训练而成。
文本生成
Transformers 韩语

T
eenzeenee
148.32k
25
Pegasus Xsum
PEGASUS是一种基于Transformer的预训练模型,专门用于抽象文本摘要任务。
文本生成 英语
P
google
144.72k
198
Bart Large Cnn Samsum
MIT
基于BART-large架构的对话摘要模型,专为SAMSum语料库微调,适用于生成对话摘要。
文本生成
Transformers 英语

B
philschmid
141.28k
258
Kobart Summarization
MIT
基于KoBART架构的韩语文本摘要模型,能够生成韩语新闻文章的简洁摘要。
文本生成
Transformers 韩语

K
gogamza
119.18k
12
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98