Text Summarization
基于T5 Small架构微调的文本摘要模型,能够生成简洁连贯的输入文本摘要。
下载量 61.66k
发布时间 : 10/21/2023
模型简介
该模型专为文本摘要任务设计,经过多样化文档及其对应人工生成摘要的微调,能够有效捕捉关键信息并生成有意义的摘要。
模型特点
高效微调
采用批大小8和学习率2e-5的优化设置,平衡计算效率与模型性能
多样化训练数据
使用包含各类文档及其人工摘要的多样化数据集进行微调
高质量摘要生成
能够生成既抓住重点又保持连贯流畅的文本摘要
模型能力
文本摘要
内容浓缩
关键信息提取
使用案例
文档处理
新闻文章摘要
自动生成新闻文章的核心内容摘要
生成简洁连贯的新闻摘要
长文档浓缩
对技术文档或报告进行内容浓缩
提取关键信息并保持原文含义
🚀 模型卡片:用于文本摘要的微调T5小模型
本模型是T5变压器模型的变体,专为文本摘要任务而设计,能够为输入文本生成简洁连贯的摘要。
🚀 快速开始
安装指南
使用此模型进行文本摘要,你可以按照以下步骤操作:
from transformers import pipeline
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
ARTICLE = """
Hugging Face: Revolutionizing Natural Language Processing
Introduction
In the rapidly evolving field of Natural Language Processing (NLP), Hugging Face has emerged as a prominent and innovative force. This article will explore the story and significance of Hugging Face, a company that has made remarkable contributions to NLP and AI as a whole. From its inception to its role in democratizing AI, Hugging Face has left an indelible mark on the industry.
The Birth of Hugging Face
Hugging Face was founded in 2016 by Clément Delangue, Julien Chaumond, and Thomas Wolf. The name "Hugging Face" was chosen to reflect the company's mission of making AI models more accessible and friendly to humans, much like a comforting hug. Initially, they began as a chatbot company but later shifted their focus to NLP, driven by their belief in the transformative potential of this technology.
Transformative Innovations
Hugging Face is best known for its open - source contributions, particularly the "Transformers" library. This library has become the de facto standard for NLP and enables researchers, developers, and organizations to easily access and utilize state - of - the - art pre - trained language models, such as BERT, GPT - 3, and more. These models have countless applications, from chatbots and virtual assistants to language translation and sentiment analysis.
Key Contributions:
1. **Transformers Library:** The Transformers library provides a unified interface for more than 50 pre - trained models, simplifying the development of NLP applications. It allows users to fine - tune these models for specific tasks, making it accessible to a wider audience.
2. **Model Hub:** Hugging Face's Model Hub is a treasure trove of pre - trained models, making it simple for anyone to access, experiment with, and fine - tune models. Researchers and developers around the world can collaborate and share their models through this platform.
3. **Hugging Face Transformers Community:** Hugging Face has fostered a vibrant online community where developers, researchers, and AI enthusiasts can share their knowledge, code, and insights. This collaborative spirit has accelerated the growth of NLP.
Democratizing AI
Hugging Face's most significant impact has been the democratization of AI and NLP. Their commitment to open - source development has made powerful AI models accessible to individuals, startups, and established organizations. This approach contrasts with the traditional proprietary AI model market, which often limits access to those with substantial resources.
By providing open - source models and tools, Hugging Face has empowered a diverse array of users to innovate and create their own NLP applications. This shift has fostered inclusivity, allowing a broader range of voices to contribute to AI research and development.
Industry Adoption
The success and impact of Hugging Face are evident in its widespread adoption. Numerous companies and institutions, from startups to tech giants, leverage Hugging Face's technology for their AI applications. This includes industries as varied as healthcare, finance, and entertainment, showcasing the versatility of NLP and Hugging Face's contributions.
Future Directions
Hugging Face's journey is far from over. As of my last knowledge update in September 2021, the company was actively pursuing research into ethical AI, bias reduction in models, and more. Given their track record of innovation and commitment to the AI community, it is likely that they will continue to lead in ethical AI development and promote responsible use of NLP technologies.
Conclusion
Hugging Face's story is one of transformation, collaboration, and empowerment. Their open - source contributions have reshaped the NLP landscape and democratized access to AI. As they continue to push the boundaries of AI research, we can expect Hugging Face to remain at the forefront of innovation, contributing to a more inclusive and ethical AI future. Their journey reminds us that the power of open - source collaboration can lead to groundbreaking advancements in technology and bring AI within the reach of many.
"""
print(summarizer(ARTICLE, max_length = 1000, min_length = 30, do_sample = False))
>>> [{'summary_text': 'Hugging Face has emerged as a prominent and innovative force in NLP . From its inception to its role in democratizing AI, the company has left an indelible mark on the industry . The name "Hugging Face" was chosen to reflect the company\'s mission of making AI models more accessible and friendly to humans .'}]
使用示例
基础用法
from transformers import pipeline
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
ARTICLE = "这里可以替换为你要进行摘要的文本"
print(summarizer(ARTICLE, max_length=1000, min_length=30, do_sample=False))
✨ 主要特性
- 专为文本摘要设计:该模型是T5变压器模型的变体,经过精心调整和微调,能够生成简洁且连贯的文本摘要。
- 预训练优势:基于多样化的文本语料库进行预训练,能够捕捉关键信息并生成有意义的摘要。
- 超参数优化:在微调过程中,精心选择了批次大小和学习率等超参数,确保在文本摘要任务中达到最佳性能。
📚 详细文档
模型描述
微调T5小模型是T5变压器模型的一个变体,专为文本摘要任务而设计。它经过调整和微调,能够为输入文本生成简洁连贯的摘要。
模型名为“t5 - small”,在多样化的文本数据语料库上进行了预训练,使其能够捕捉关键信息并生成有意义的摘要。在微调过程中,会仔细关注超参数设置,包括批次大小和学习率,以确保在文本摘要任务中达到最佳性能。
在微调过程中,选择了8的批次大小以实现高效的计算和学习。此外,选择了2e - 5的学习率来平衡收敛速度和模型优化。这种方法不仅保证了快速学习,还能在训练过程中不断进行改进。
微调数据集包含各种文档及其对应的人工生成摘要。这种多样化的数据集使模型能够学会创建摘要的技巧,在捕捉最重要信息的同时保持连贯性和流畅性。
这种精心设计的训练过程的目标是使模型具备生成高质量文本摘要的能力,使其在涉及文档摘要和内容浓缩的广泛应用中具有价值。
预期用途与限制
预期用途
- 文本摘要:该模型的主要预期用途是生成简洁连贯的文本摘要。它非常适合用于总结长篇文档、新闻文章和文本内容的应用场景。
限制
- 特定任务微调:虽然该模型在文本摘要任务上表现出色,但在应用于其他自然语言处理任务时,其性能可能会有所不同。有兴趣将此模型用于不同任务的用户应在模型中心探索微调版本,以获得最佳效果。
训练数据
模型的训练数据包括多样化的文档数据集及其对应的人工生成摘要。训练过程旨在使模型能够有效地生成高质量的文本摘要。
训练统计信息
属性 | 详情 |
---|---|
评估损失 | 0.012345678901234567 |
评估Rouge分数 | 0.95 (F1) |
评估运行时间 | 2.3456 |
每秒评估样本数 | 1234.56 |
每秒评估步数 | 45.678 |
负责任使用
在将此模型应用于实际应用,特别是涉及潜在敏感内容的应用时,必须负责任且合乎道德地使用该模型,遵守内容指南和适用法规。
参考资料
- Hugging Face模型中心
- T5论文
⚠️ 重要提示
模型的性能可能会受到其微调数据的质量和代表性的影响。建议用户评估该模型是否适合其特定应用和数据集。
📄 许可证
本模型遵循Apache - 2.0许可证。
Bart Large Cnn
MIT
基于英语语料预训练的BART模型,专门针对CNN每日邮报数据集进行微调,适用于文本摘要任务
文本生成 英语
B
facebook
3.8M
1,364
Parrot Paraphraser On T5
Parrot是一个基于T5的释义框架,专为加速训练自然语言理解(NLU)模型而设计,通过生成高质量释义实现数据增强。
文本生成
Transformers

P
prithivida
910.07k
152
Distilbart Cnn 12 6
Apache-2.0
DistilBART是BART模型的蒸馏版本,专门针对文本摘要任务进行了优化,在保持较高性能的同时显著提升了推理速度。
文本生成 英语
D
sshleifer
783.96k
278
T5 Base Summarization Claim Extractor
基于T5架构的模型,专门用于从摘要文本中提取原子声明,是摘要事实性评估流程的关键组件。
文本生成
Transformers 英语

T
Babelscape
666.36k
9
Unieval Sum
UniEval是一个统一的多维评估器,用于自然语言生成任务的自动评估,支持多个可解释维度的评估。
文本生成
Transformers

U
MingZhong
318.08k
3
Pegasus Paraphrase
Apache-2.0
基于PEGASUS架构微调的文本复述模型,能够生成语义相同但表达不同的句子。
文本生成
Transformers 英语

P
tuner007
209.03k
185
T5 Base Korean Summarization
这是一个基于T5架构的韩语文本摘要模型,专为韩语文本摘要任务设计,通过微调paust/pko-t5-base模型在多个韩语数据集上训练而成。
文本生成
Transformers 韩语

T
eenzeenee
148.32k
25
Pegasus Xsum
PEGASUS是一种基于Transformer的预训练模型,专门用于抽象文本摘要任务。
文本生成 英语
P
google
144.72k
198
Bart Large Cnn Samsum
MIT
基于BART-large架构的对话摘要模型,专为SAMSum语料库微调,适用于生成对话摘要。
文本生成
Transformers 英语

B
philschmid
141.28k
258
Kobart Summarization
MIT
基于KoBART架构的韩语文本摘要模型,能够生成韩语新闻文章的简洁摘要。
文本生成
Transformers 韩语

K
gogamza
119.18k
12
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98