3gpp Embedding Model V0
3
3gpp Embedding Model V0
由 iris49 开发
这是一个基于BAAI/bge-base-en-v1.5微调的句子转换器模型,专为3GPP相关技术文档的问答系统优化,能够将文本映射到768维向量空间。
下载量 104
发布时间 : 3/14/2025
模型简介
该模型主要用于语义文本相似性、语义搜索、释义挖掘、文本分类和聚类等任务,特别适合处理3GPP技术文档中的专业内容。
模型特点
专业领域优化
针对3GPP技术文档进行了专门微调,在处理通信技术专业内容时表现优异
多维度输出
支持多种维度输出(768/512/256/128/64),可根据需求平衡精度和效率
高性能检索
在信息检索任务中表现出色,准确率@1达到83.47%,准确率@10高达99.27%
长文本处理
支持最大512个标记的序列长度,适合处理技术文档中的较长段落
模型能力
语义文本相似性计算
专业文档信息检索
技术问答系统支持
文本分类与聚类
释义挖掘
使用案例
通信技术文档处理
3GPP标准文档问答系统
用于构建针对3GPP技术标准的智能问答系统,快速定位相关技术内容
在技术文档检索任务中达到83.47%的准确率
技术文档相似性分析
分析不同技术文档段落之间的语义相似性,辅助文档理解和管理
专业信息检索
通信协议检索
快速检索与特定通信协议相关的技术描述和定义
🚀 BGE_base_3gpp-qa-v2_Matryoshka
这是一个基于 sentence-transformers 的模型,它在 json 数据集上对 BAAI/bge-base-en-v1.5 进行了微调。该模型可以将句子和段落映射到一个 768 维的密集向量空间,可用于语义文本相似度、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
直接使用(Sentence Transformers)
首先安装 Sentence Transformers 库:
pip install -U sentence-transformers
然后,你可以加载这个模型并进行推理。
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载
model = SentenceTransformer("iris49/3gpp-embedding-model-v0")
# 进行推理
sentences = [
'What types of data structures are supported by the GET request body on the resource described in table 5.2.11.3.4-2, and how do they influence the request?',
"The data structures supported by the GET request body on the resource are detailed in table 5.2.11.3.4-2. These structures define the format and content of the data that can be sent in the request body. They might include fields such as 'filterCriteria', 'sortOrder', or 'pagination', which influence how the server processes the request and returns the appropriate data.",
"The specific triggers on the Ro interface that can lead to the termination of the IMS service include: 1) Reception of an unsuccessful Operation Result different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE in the Debit/Reserve Units Response message. 2) Reception of an unsuccessful Result Code different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE within the multiple units operation in the Debit/Reserve Units Response message when only one instance of the multiple units operation field is used. 3) Execution of the termination action procedure as defined in TS 32.299 when only one instance of the Multiple Unit Operation field is used. 4) Execution of the failure handling procedures when the Failure Action is set to 'Terminate' or 'Retry & Terminate'. 5) Reception in the IMS-GWF of an Abort-Session-Request message from OCS.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度得分
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 将句子和段落映射到 768 维的密集向量空间。
- 可用于语义文本相似度、语义搜索、释义挖掘、文本分类、聚类等多种任务。
📦 安装指南
安装 Sentence Transformers 库:
pip install -U sentence-transformers
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | BAAI/bge-base-en-v1.5 |
最大序列长度 | 512 个标记 |
输出维度 | 768 维 |
相似度函数 | 余弦相似度 |
训练数据集 | json |
语言 | 英语 |
许可证 | apache-2.0 |
模型来源
- 文档:Sentence Transformers 文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
评估
指标
信息检索
- 数据集:
dim_768
、dim_512
、dim_256
、dim_128
和dim_64
- 评估方法:使用
InformationRetrievalEvaluator
进行评估
指标 | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
cosine_accuracy@3 | 0.9628 | 0.963 | 0.9624 | 0.9611 | 0.9575 |
cosine_accuracy@5 | 0.9806 | 0.9808 | 0.9802 | 0.9796 | 0.9772 |
cosine_accuracy@10 | 0.9927 | 0.9926 | 0.9923 | 0.9917 | 0.9906 |
cosine_precision@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
cosine_precision@3 | 0.3209 | 0.321 | 0.3208 | 0.3204 | 0.3192 |
cosine_precision@5 | 0.1961 | 0.1962 | 0.196 | 0.1959 | 0.1954 |
cosine_precision@10 | 0.0993 | 0.0993 | 0.0992 | 0.0992 | 0.0991 |
cosine_recall@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
cosine_recall@3 | 0.9628 | 0.963 | 0.9624 | 0.9611 | 0.9575 |
cosine_recall@5 | 0.9806 | 0.9808 | 0.9802 | 0.9796 | 0.9772 |
cosine_recall@10 | 0.9927 | 0.9926 | 0.9923 | 0.9917 | 0.9906 |
cosine_ndcg@10 | 0.9235 | 0.9233 | 0.9224 | 0.9205 | 0.9159 |
cosine_mrr@10 | 0.9003 | 0.9 | 0.8989 | 0.8965 | 0.8908 |
cosine_map@100 | 0.9007 | 0.9004 | 0.8993 | 0.897 | 0.8913 |
训练详情
训练数据集
json
- 数据集:json
- 大小:56,041 个训练样本
- 列:
anchor
和positive
- 基于前 1000 个样本的近似统计信息:
| | anchor | positive |
| ---- | ---- | ---- |
| 类型 | 字符串 | 字符串 |
| 详情 |
- 最小值:15 个标记
- 平均值:30.56 个标记
- 最大值:66 个标记
- 最小值:42 个标记
- 平均值:109.65 个标记
- 最大值:298 个标记
- 样本:
| anchor | positive |
| ---- | ---- |
|
What does the 'dataStatProps' attribute represent in the 'AnalyticsMetadataInfo' type, and what is its data type?
|The 'dataStatProps' attribute in the 'AnalyticsMetadataInfo' type represents a list of dataset statistical properties of the data used to generate the analytics. It is defined as an optional attribute with a data type of 'array(DatasetStatisticalProperty)' and a cardinality of 1..N, meaning it can contain one or more elements.
| |Why is it important to have standardized methods for resource management in the Nudm_SubscriberDataManagement Service API?
|Standardized methods for resource management in the Nudm_SubscriberDataManagement Service API are important because they ensure uniformity, predictability, and compatibility across different implementations and systems. This standardization facilitates seamless integration, reduces errors, and enhances the efficiency of managing subscriber data, which is critical for maintaining reliable communication services.
| |What is the purpose of the Nsmf_PDUSession_SMContextStatusNotify service operation in the context of I-SMF context transfer?
|The Nsmf_PDUSession_SMContextStatusNotify service operation is used by the SMF (Session Management Function) to notify its consumers about the status of an SM (Session Management) context related to a PDU (Packet Data Unit) Session. In the context of I-SMF (Intermediate SMF) context transfer, this service operation is used to indicate the transfer of the SM context to a new I-SMF or SMF set. It also allows the SMF to update the SMF-derived CN (Core Network) assisted RAN (Radio Access Network) parameters tuning in the AMF (Access and Mobility Management Function). Additionally, it can report DDN (Downlink Data Notification) failures and provide target DNAI (Data Network Access Identifier) information for the current or next PDU session.
| - 损失函数:
MatryoshkaLoss
,参数如下:
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
训练超参数
非默认超参数
eval_strategy
:epochper_device_train_batch_size
:32per_device_eval_batch_size
:16gradient_accumulation_steps
:16learning_rate
:2e-05num_train_epochs
:4lr_scheduler_type
:cosinewarmup_ratio
:0.1fp16
:Trueload_best_model_at_end
:Trueoptim
:adamw_torch_fusedbatch_sampler
:no_duplicates
所有超参数
点击展开
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:epochprediction_loss_only
:Trueper_device_train_batch_size
:32per_device_eval_batch_size
:16per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:16eval_accumulation_steps
:Nonelearning_rate
:2e-05weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1.0num_train_epochs
:4max_steps
:-1lr_scheduler_type
:cosinelr_scheduler_kwargs
:{}warmup_ratio
:0.1warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Falsefp16
:Truefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:0dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Trueignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torch_fusedoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Falsehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseeval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Nonedispatch_batches
:Nonesplit_batches
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseprompts
:Nonebatch_sampler
:no_duplicatesmulti_dataset_batch_sampler
:proportional
训练日志
轮次 | 步数 | 训练损失 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.0913 | 10 | 1.4273 | - | - | - | - | - |
0.1826 | 20 | 0.5399 | - | - | - | - | - |
0.2740 | 30 | 0.1252 | - | - | - | - | - |
0.3653 | 40 | 0.0625 | - | - | - | - | - |
0.4566 | 50 | 0.0507 | - | - | - | - | - |
0.5479 | 60 | 0.0366 | - | - | - | - | - |
0.6393 | 70 | 0.029 | - | - | - | - | - |
0.7306 | 80 | 0.0239 | - | - | - | - | - |
0.8219 | 90 | 0.0252 | - | - | - | - | - |
0.9132 | 100 | 0.0237 | - | - | - | - | - |
0.9954 | 109 | - | 0.9199 | 0.9195 | 0.9180 | 0.9150 | 0.9081 |
1.0046 | 110 | 0.026 | - | - | - | - | - |
1.0959 | 120 | 0.017 | - | - | - | - | - |
1.1872 | 130 | 0.02 | - | - | - | - | - |
1.2785 | 140 | 0.0125 | - | - | - | - | - |
1.3699 | 150 | 0.0134 | - | - | - | - | - |
1.4612 | 160 | 0.0128 | - | - | - | - | - |
1.5525 | 170 | 0.0123 | - | - | - | - | - |
1.6438 | 180 | 0.0097 | - | - | - | - | - |
1.7352 | 190 | 0.0101 | - | - | - | - | - |
1.8265 | 200 | 0.0124 | - | - | - | - | - |
1.9178 | 210 | 0.0116 | - | - | - | - | - |
2.0 | 219 | - | 0.9220 | 0.9216 | 0.9206 | 0.9184 | 0.9130 |
2.0091 | 220 | 0.012 | - | - | - | - | - |
2.1005 | 230 | 0.0111 | - | - | - | - | - |
2.1918 | 240 | 0.0101 | - | - | - | - | - |
2.2831 | 250 | 0.0101 | - | - | - | - | - |
2.3744 | 260 | 0.009 | - | - | - | - | - |
2.4658 | 270 | 0.0103 | - | - | - | - | - |
2.5571 | 280 | 0.009 | - | - | - | - | - |
2.6484 | 290 | 0.0083 | - | - | - | - | - |
2.7397 | 300 | 0.0076 | - | - | - | - | - |
2.8311 | 310 | 0.0093 | - | - | - | - | - |
2.9224 | 320 | 0.0104 | - | - | - | - | - |
2.9954 | 328 | - | 0.9234 | 0.9230 | 0.9221 | 0.9201 | 0.9156 |
3.0137 | 330 | 0.0104 | - | - | - | - | - |
3.1050 | 340 | 0.0089 | - | - | - | - | - |
3.1963 | 350 | 0.0084 | - | - | - | - | - |
3.2877 | 360 | 0.0082 | - | - | - | - | - |
3.3790 | 370 | 0.0089 | - | - | - | - | - |
3.4703 | 380 | 0.0083 | - | - | - | - | - |
3.5616 | 390 | 0.0061 | - | - | - | - | - |
3.6530 | 400 | 0.0065 | - | - | - | - | - |
3.7443 | 410 | 0.0063 | - | - | - | - | - |
3.8356 | 420 | 0.0084 | - | - | - | - | - |
3.9269 | 430 | 0.0083 | - | - | - | - | - |
3.9817 | 436 | - | 0.9235 | 0.9233 | 0.9224 | 0.9205 | 0.9159 |
加粗行表示保存的检查点。
框架版本
- Python:3.11.11
- Sentence Transformers:3.3.1
- Transformers:4.41.2
- PyTorch:2.1.2+cu121
- Accelerate:1.2.1
- Datasets:2.19.1
- Tokenizers:0.19.1
📄 许可证
本模型使用 apache-2.0 许可证。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98