3gpp Embedding Model V0
3
3gpp Embedding Model V0
由iris49開發
這是一個基於BAAI/bge-base-en-v1.5微調的句子轉換器模型,專為3GPP相關技術文檔的問答系統優化,能夠將文本映射到768維向量空間。
下載量 104
發布時間 : 3/14/2025
模型概述
該模型主要用於語義文本相似性、語義搜索、釋義挖掘、文本分類和聚類等任務,特別適合處理3GPP技術文檔中的專業內容。
模型特點
專業領域優化
針對3GPP技術文檔進行了專門微調,在處理通信技術專業內容時表現優異
多維度輸出
支持多種維度輸出(768/512/256/128/64),可根據需求平衡精度和效率
高性能檢索
在信息檢索任務中表現出色,準確率@1達到83.47%,準確率@10高達99.27%
長文本處理
支持最大512個標記的序列長度,適合處理技術文檔中的較長段落
模型能力
語義文本相似性計算
專業文檔信息檢索
技術問答系統支持
文本分類與聚類
釋義挖掘
使用案例
通信技術文檔處理
3GPP標準文檔問答系統
用於構建針對3GPP技術標準的智能問答系統,快速定位相關技術內容
在技術文檔檢索任務中達到83.47%的準確率
技術文檔相似性分析
分析不同技術文檔段落之間的語義相似性,輔助文檔理解和管理
專業信息檢索
通信協議檢索
快速檢索與特定通信協議相關的技術描述和定義
🚀 BGE_base_3gpp-qa-v2_Matryoshka
這是一個基於 sentence-transformers 的模型,它在 json 數據集上對 BAAI/bge-base-en-v1.5 進行了微調。該模型可以將句子和段落映射到一個 768 維的密集向量空間,可用於語義文本相似度、語義搜索、釋義挖掘、文本分類、聚類等任務。
🚀 快速開始
直接使用(Sentence Transformers)
首先安裝 Sentence Transformers 庫:
pip install -U sentence-transformers
然後,你可以加載這個模型並進行推理。
from sentence_transformers import SentenceTransformer
# 從 🤗 Hub 下載
model = SentenceTransformer("iris49/3gpp-embedding-model-v0")
# 進行推理
sentences = [
'What types of data structures are supported by the GET request body on the resource described in table 5.2.11.3.4-2, and how do they influence the request?',
"The data structures supported by the GET request body on the resource are detailed in table 5.2.11.3.4-2. These structures define the format and content of the data that can be sent in the request body. They might include fields such as 'filterCriteria', 'sortOrder', or 'pagination', which influence how the server processes the request and returns the appropriate data.",
"The specific triggers on the Ro interface that can lead to the termination of the IMS service include: 1) Reception of an unsuccessful Operation Result different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE in the Debit/Reserve Units Response message. 2) Reception of an unsuccessful Result Code different from DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE within the multiple units operation in the Debit/Reserve Units Response message when only one instance of the multiple units operation field is used. 3) Execution of the termination action procedure as defined in TS 32.299 when only one instance of the Multiple Unit Operation field is used. 4) Execution of the failure handling procedures when the Failure Action is set to 'Terminate' or 'Retry & Terminate'. 5) Reception in the IMS-GWF of an Abort-Session-Request message from OCS.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 獲取嵌入向量的相似度得分
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 將句子和段落映射到 768 維的密集向量空間。
- 可用於語義文本相似度、語義搜索、釋義挖掘、文本分類、聚類等多種任務。
📦 安裝指南
安裝 Sentence Transformers 庫:
pip install -U sentence-transformers
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器 |
基礎模型 | BAAI/bge-base-en-v1.5 |
最大序列長度 | 512 個標記 |
輸出維度 | 768 維 |
相似度函數 | 餘弦相似度 |
訓練數據集 | json |
語言 | 英語 |
許可證 | apache-2.0 |
模型來源
- 文檔:Sentence Transformers 文檔
- 倉庫:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
評估
指標
信息檢索
- 數據集:
dim_768
、dim_512
、dim_256
、dim_128
和dim_64
- 評估方法:使用
InformationRetrievalEvaluator
進行評估
指標 | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
cosine_accuracy@3 | 0.9628 | 0.963 | 0.9624 | 0.9611 | 0.9575 |
cosine_accuracy@5 | 0.9806 | 0.9808 | 0.9802 | 0.9796 | 0.9772 |
cosine_accuracy@10 | 0.9927 | 0.9926 | 0.9923 | 0.9917 | 0.9906 |
cosine_precision@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
cosine_precision@3 | 0.3209 | 0.321 | 0.3208 | 0.3204 | 0.3192 |
cosine_precision@5 | 0.1961 | 0.1962 | 0.196 | 0.1959 | 0.1954 |
cosine_precision@10 | 0.0993 | 0.0993 | 0.0992 | 0.0992 | 0.0991 |
cosine_recall@1 | 0.8347 | 0.8341 | 0.8326 | 0.8294 | 0.8211 |
cosine_recall@3 | 0.9628 | 0.963 | 0.9624 | 0.9611 | 0.9575 |
cosine_recall@5 | 0.9806 | 0.9808 | 0.9802 | 0.9796 | 0.9772 |
cosine_recall@10 | 0.9927 | 0.9926 | 0.9923 | 0.9917 | 0.9906 |
cosine_ndcg@10 | 0.9235 | 0.9233 | 0.9224 | 0.9205 | 0.9159 |
cosine_mrr@10 | 0.9003 | 0.9 | 0.8989 | 0.8965 | 0.8908 |
cosine_map@100 | 0.9007 | 0.9004 | 0.8993 | 0.897 | 0.8913 |
訓練詳情
訓練數據集
json
- 數據集:json
- 大小:56,041 個訓練樣本
- 列:
anchor
和positive
- 基於前 1000 個樣本的近似統計信息:
| | anchor | positive |
| ---- | ---- | ---- |
| 類型 | 字符串 | 字符串 |
| 詳情 |
- 最小值:15 個標記
- 平均值:30.56 個標記
- 最大值:66 個標記
- 最小值:42 個標記
- 平均值:109.65 個標記
- 最大值:298 個標記
- 樣本:
| anchor | positive |
| ---- | ---- |
|
What does the 'dataStatProps' attribute represent in the 'AnalyticsMetadataInfo' type, and what is its data type?
|The 'dataStatProps' attribute in the 'AnalyticsMetadataInfo' type represents a list of dataset statistical properties of the data used to generate the analytics. It is defined as an optional attribute with a data type of 'array(DatasetStatisticalProperty)' and a cardinality of 1..N, meaning it can contain one or more elements.
| |Why is it important to have standardized methods for resource management in the Nudm_SubscriberDataManagement Service API?
|Standardized methods for resource management in the Nudm_SubscriberDataManagement Service API are important because they ensure uniformity, predictability, and compatibility across different implementations and systems. This standardization facilitates seamless integration, reduces errors, and enhances the efficiency of managing subscriber data, which is critical for maintaining reliable communication services.
| |What is the purpose of the Nsmf_PDUSession_SMContextStatusNotify service operation in the context of I-SMF context transfer?
|The Nsmf_PDUSession_SMContextStatusNotify service operation is used by the SMF (Session Management Function) to notify its consumers about the status of an SM (Session Management) context related to a PDU (Packet Data Unit) Session. In the context of I-SMF (Intermediate SMF) context transfer, this service operation is used to indicate the transfer of the SM context to a new I-SMF or SMF set. It also allows the SMF to update the SMF-derived CN (Core Network) assisted RAN (Radio Access Network) parameters tuning in the AMF (Access and Mobility Management Function). Additionally, it can report DDN (Downlink Data Notification) failures and provide target DNAI (Data Network Access Identifier) information for the current or next PDU session.
| - 損失函數:
MatryoshkaLoss
,參數如下:
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
訓練超參數
非默認超參數
eval_strategy
:epochper_device_train_batch_size
:32per_device_eval_batch_size
:16gradient_accumulation_steps
:16learning_rate
:2e-05num_train_epochs
:4lr_scheduler_type
:cosinewarmup_ratio
:0.1fp16
:Trueload_best_model_at_end
:Trueoptim
:adamw_torch_fusedbatch_sampler
:no_duplicates
所有超參數
點擊展開
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:epochprediction_loss_only
:Trueper_device_train_batch_size
:32per_device_eval_batch_size
:16per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:16eval_accumulation_steps
:Nonelearning_rate
:2e-05weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1.0num_train_epochs
:4max_steps
:-1lr_scheduler_type
:cosinelr_scheduler_kwargs
:{}warmup_ratio
:0.1warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Falsefp16
:Truefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:0dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Trueignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torch_fusedoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Falsehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseeval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Nonedispatch_batches
:Nonesplit_batches
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseprompts
:Nonebatch_sampler
:no_duplicatesmulti_dataset_batch_sampler
:proportional
訓練日誌
輪次 | 步數 | 訓練損失 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.0913 | 10 | 1.4273 | - | - | - | - | - |
0.1826 | 20 | 0.5399 | - | - | - | - | - |
0.2740 | 30 | 0.1252 | - | - | - | - | - |
0.3653 | 40 | 0.0625 | - | - | - | - | - |
0.4566 | 50 | 0.0507 | - | - | - | - | - |
0.5479 | 60 | 0.0366 | - | - | - | - | - |
0.6393 | 70 | 0.029 | - | - | - | - | - |
0.7306 | 80 | 0.0239 | - | - | - | - | - |
0.8219 | 90 | 0.0252 | - | - | - | - | - |
0.9132 | 100 | 0.0237 | - | - | - | - | - |
0.9954 | 109 | - | 0.9199 | 0.9195 | 0.9180 | 0.9150 | 0.9081 |
1.0046 | 110 | 0.026 | - | - | - | - | - |
1.0959 | 120 | 0.017 | - | - | - | - | - |
1.1872 | 130 | 0.02 | - | - | - | - | - |
1.2785 | 140 | 0.0125 | - | - | - | - | - |
1.3699 | 150 | 0.0134 | - | - | - | - | - |
1.4612 | 160 | 0.0128 | - | - | - | - | - |
1.5525 | 170 | 0.0123 | - | - | - | - | - |
1.6438 | 180 | 0.0097 | - | - | - | - | - |
1.7352 | 190 | 0.0101 | - | - | - | - | - |
1.8265 | 200 | 0.0124 | - | - | - | - | - |
1.9178 | 210 | 0.0116 | - | - | - | - | - |
2.0 | 219 | - | 0.9220 | 0.9216 | 0.9206 | 0.9184 | 0.9130 |
2.0091 | 220 | 0.012 | - | - | - | - | - |
2.1005 | 230 | 0.0111 | - | - | - | - | - |
2.1918 | 240 | 0.0101 | - | - | - | - | - |
2.2831 | 250 | 0.0101 | - | - | - | - | - |
2.3744 | 260 | 0.009 | - | - | - | - | - |
2.4658 | 270 | 0.0103 | - | - | - | - | - |
2.5571 | 280 | 0.009 | - | - | - | - | - |
2.6484 | 290 | 0.0083 | - | - | - | - | - |
2.7397 | 300 | 0.0076 | - | - | - | - | - |
2.8311 | 310 | 0.0093 | - | - | - | - | - |
2.9224 | 320 | 0.0104 | - | - | - | - | - |
2.9954 | 328 | - | 0.9234 | 0.9230 | 0.9221 | 0.9201 | 0.9156 |
3.0137 | 330 | 0.0104 | - | - | - | - | - |
3.1050 | 340 | 0.0089 | - | - | - | - | - |
3.1963 | 350 | 0.0084 | - | - | - | - | - |
3.2877 | 360 | 0.0082 | - | - | - | - | - |
3.3790 | 370 | 0.0089 | - | - | - | - | - |
3.4703 | 380 | 0.0083 | - | - | - | - | - |
3.5616 | 390 | 0.0061 | - | - | - | - | - |
3.6530 | 400 | 0.0065 | - | - | - | - | - |
3.7443 | 410 | 0.0063 | - | - | - | - | - |
3.8356 | 420 | 0.0084 | - | - | - | - | - |
3.9269 | 430 | 0.0083 | - | - | - | - | - |
3.9817 | 436 | - | 0.9235 | 0.9233 | 0.9224 | 0.9205 | 0.9159 |
加粗行表示保存的檢查點。
框架版本
- Python:3.11.11
- Sentence Transformers:3.3.1
- Transformers:4.41.2
- PyTorch:2.1.2+cu121
- Accelerate:1.2.1
- Datasets:2.19.1
- Tokenizers:0.19.1
📄 許可證
本模型使用 apache-2.0 許可證。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98