🚀 nthakur/contriever-base-msmarco
这是一个将 Contriever MSMARCO 模型 迁移到 sentence-transformers 的模型。它可以将句子和段落映射到 768 维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
📦 安装指南
如果你已经安装了 sentence-transformers,使用这个模型会很容易:
pip install -U sentence-transformers
💻 使用示例
基础用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('nthakur/contriever-base-msmarco')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(HuggingFace Transformers)
如果没有安装 sentence-transformers,你可以这样使用该模型:首先,将输入数据传入 Transformer 模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('nthakur/contriever-base-msmarco')
model = AutoModel.from_pretrained('nthakur/contriever-base-msmarco')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
🔍 评估结果
有关该模型的自动评估,请参阅 Sentence Embeddings Benchmark:https://seb.sbert.net
🏗️ 完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📖 引用与作者
更多信息请参考:Contriever Model。