Fine Tuned Embedding Model
这是一个基于sentence-transformers/all-MiniLM-L6-v2微调的句子转换器模型,用于将文本映射到384维向量空间,支持语义相似度计算等任务。
下载量 17
发布时间 : 9/23/2024
模型简介
该模型将句子和段落映射到384维密集向量空间,可用于语义文本相似性、语义搜索、释义挖掘、文本分类、聚类等任务。
模型特点
高效语义编码
将文本高效编码为384维向量,保留语义信息
多任务支持
支持语义相似度计算、文本分类、聚类等多种下游任务
轻量级模型
基于MiniLM架构,在保持性能的同时减少计算资源需求
模型能力
语义文本相似度计算
语义搜索
释义挖掘
文本分类
文本聚类
特征提取
使用案例
信息检索
文档相似度匹配
计算文档间的语义相似度,用于推荐相关文档
内容管理
重复内容检测
识别语义相似的重复内容
🚀 基于sentence-transformers/all-MiniLM-L6-v2的句子转换器模型
本项目是一个基于 sentence-transformers 框架,从 sentence-transformers/all-MiniLM-L6-v2 微调而来的模型。它能将句子和段落映射到384维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
本模型是基于 sentence-transformers
框架微调的,以下是使用该模型的具体步骤:
安装Sentence Transformers库
pip install -U sentence-transformers
加载模型并进行推理
from sentence_transformers import SentenceTransformer
# 从🤗 Hub下载模型
model = SentenceTransformer("sentence_transformers_model_id")
# 进行推理
sentences = [
'What does this text say about data privacy?',
'information during GAI training and maintenance. \nHuman-AI Configuration; Obscene, \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration; \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or levels of harmful bias, intellectual property infringement, \ndata privacy violations, obscenity, extremism, violence, or CBRN information in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety features of fine-tuned models when the negative risk exceeds \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review GAI system outputs for validity and safety: Review generated code to \nassess risks that may arise from unreliable downstream decision-making. \nValue Chain and Component \nIntegration; Dangerous, Violent, or \nHateful Content',
'Scheurer, J. et al. (2023) Technical report: Large language models can strategically deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590 \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \nShevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324 \nShumailov, I. et al. (2023) The curse of recursion: training on generated data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388 \nSoice, E. et al. (2023) Can large language models democratize access to dual-use biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 高维向量映射:能够将句子和段落映射到384维的密集向量空间。
- 多任务支持:可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等多种自然语言处理任务。
📦 安装指南
要使用本模型,需要安装 sentence-transformers
库,可使用以下命令进行安装:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从🤗 Hub下载模型
model = SentenceTransformer("sentence_transformers_model_id")
# 进行推理
sentences = [
'What does this text say about data privacy?',
'information during GAI training and maintenance. \nHuman-AI Configuration; Obscene, \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration; \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or levels of harmful bias, intellectual property infringement, \ndata privacy violations, obscenity, extremism, violence, or CBRN information in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety features of fine-tuned models when the negative risk exceeds \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review GAI system outputs for validity and safety: Review generated code to \nassess risks that may arise from unreliable downstream decision-making. \nValue Chain and Component \nIntegration; Dangerous, Violent, or \nHateful Content',
'Scheurer, J. et al. (2023) Technical report: Large language models can strategically deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590 \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \nShevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324 \nShumailov, I. et al. (2023) The curse of recursion: training on generated data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388 \nSoice, E. et al. (2023) Can large language models democratize access to dual-use biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | sentence-transformers/all-MiniLM-L6-v2 |
最大序列长度 | 256个词元 |
输出维度 | 384个词元 |
相似度函数 | 余弦相似度 |
模型资源
- 文档:Sentence Transformers文档
- 代码仓库:GitHub上的Sentence Transformers
- Hugging Face:Hugging Face上的Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
训练详情
训练数据集
未命名数据集
- 数据集大小:555个训练样本
- 列信息:
<code>sentence_0</code>
和<code>sentence_1</code>
- 近似统计信息(基于前555个样本):
sentence_0 sentence_1 类型 字符串 字符串 详情 - 最小:10个词元
- 平均:11.2个词元
- 最大:12个词元
- 最小:156个词元
- 平均:199.37个词元
- 最大:256个词元
- 样本示例:
sentence_0 sentence_1 What does this text say about trustworthiness?
other systems.
Information Integrity; Value Chain
and Component Integration
MP-2.2-002
Observe and analyze how the GAI system interacts with external networks, and
identify any potential for negative externalities, particularly where content
provenance might be compromised.
Information Integrity
AI Actor Tasks: End Users
MAP 2.3: Scientific integrity and TEVV considerations are identified and documented, including those related to experimental
design, data collection and selection (e.g., availability, representativeness, suitability), system trustworthiness, and construct
validation
Action ID
Suggested Action
GAI Risks
MP-2.3-001
Assess the accuracy, quality, reliability, and authenticity of GAI output by
comparing it to a set of known ground truth data and by using a variety of
evaluation methods (e.g., human oversight and automated evaluation, proven
cryptographic techniques, review of content inputs).
Information Integrity
25What does this text say about unclassified?
training and TEVV data; Filtering of hate speech or content in GAI system
training data; Prevalence of GAI-generated data in GAI system training data.
Harmful Bias and Homogenization
15 Winogender Schemas is a sample set of paired sentences which differ only by gender of the pronouns used,
which can be used to evaluate gender bias in natural language processing coreference resolution systems.
37
MS-2.11-005
Assess the proportion of synthetic to non-synthetic training data and verify
training data is not overly homogenous or GAI-produced to mitigate concerns of
model collapse.
Harmful Bias and Homogenization
AI Actor Tasks: AI Deployment, AI Impact Assessment, Affected Individuals and Communities, Domain Experts, End-Users,
Operation and Monitoring, TEVV
MEASURE 2.12: Environmental impact and sustainability of AI model training and management activities – as identified in the MAP
function – are assessed and documented.
Action ID
Suggested Action
GAI RisksWhat does this text say about unclassified?
Padmakumar, V. et al. (2024) Does writing with language models reduce content diversity? ICLR.
https://arxiv.org/pdf/2309.05196
Park, P. et. al. (2024) AI deception: A survey of examples, risks, and potential solutions. Patterns, 5(5).
arXiv. https://arxiv.org/pdf/2308.14752
Partnership on AI (2023) Building a Glossary for Synthetic Media Transparency Methods, Part 1: Indirect
Disclosure. https://partnershiponai.org/glossary-for-synthetic-media-transparency-methods-part-1-
indirect-disclosure/
Qu, Y. et al. (2023) Unsafe Diffusion: On the Generation of Unsafe Images and Hateful Memes From Text-
To-Image Models. arXiv. https://arxiv.org/pdf/2305.13873
Rafat, K. et al. (2023) Mitigating carbon footprint for knowledge distillation based deep learning model
compression. PLOS One. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285668
Said, I. et al. (2022) Nonconsensual Distribution of Intimate Images: Exploring the Role of Legal Attitudes
训练损失函数
使用 MultipleNegativesRankingLoss
损失函数,参数如下:
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
训练超参数
非默认超参数
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
框架版本
- Python:3.11.5
- Sentence Transformers:3.1.1
- Transformers:4.44.2
- PyTorch:2.4.1+cpu
- Accelerate:0.34.2
- Datasets:3.0.0
- Tokenizers:0.19.1
🔧 技术细节
本模型基于 sentence-transformers
框架,从 sentence-transformers/all-MiniLM-L6-v2
微调而来。模型结构包含 Transformer
层、Pooling
层和 Normalize
层,具体如下:
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
在训练过程中,使用了 MultipleNegativesRankingLoss
损失函数,并设置了相应的超参数,以优化模型性能。
📄 许可证
文档中未提及相关许可证信息。
📖 引用
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98