Fine Tuned Embedding Model
這是一個基於sentence-transformers/all-MiniLM-L6-v2微調的句子轉換器模型,用於將文本映射到384維向量空間,支持語義相似度計算等任務。
下載量 17
發布時間 : 9/23/2024
模型概述
該模型將句子和段落映射到384維密集向量空間,可用於語義文本相似性、語義搜索、釋義挖掘、文本分類、聚類等任務。
模型特點
高效語義編碼
將文本高效編碼為384維向量,保留語義信息
多任務支持
支持語義相似度計算、文本分類、聚類等多種下游任務
輕量級模型
基於MiniLM架構,在保持性能的同時減少計算資源需求
模型能力
語義文本相似度計算
語義搜索
釋義挖掘
文本分類
文本聚類
特徵提取
使用案例
信息檢索
文檔相似度匹配
計算文檔間的語義相似度,用於推薦相關文檔
內容管理
重複內容檢測
識別語義相似的重複內容
🚀 基於sentence-transformers/all-MiniLM-L6-v2的句子轉換器模型
本項目是一個基於 sentence-transformers 框架,從 sentence-transformers/all-MiniLM-L6-v2 微調而來的模型。它能將句子和段落映射到384維的密集向量空間,可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等任務。
🚀 快速開始
本模型是基於 sentence-transformers
框架微調的,以下是使用該模型的具體步驟:
安裝Sentence Transformers庫
pip install -U sentence-transformers
加載模型並進行推理
from sentence_transformers import SentenceTransformer
# 從🤗 Hub下載模型
model = SentenceTransformer("sentence_transformers_model_id")
# 進行推理
sentences = [
'What does this text say about data privacy?',
'information during GAI training and maintenance. \nHuman-AI Configuration; Obscene, \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration; \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or levels of harmful bias, intellectual property infringement, \ndata privacy violations, obscenity, extremism, violence, or CBRN information in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety features of fine-tuned models when the negative risk exceeds \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review GAI system outputs for validity and safety: Review generated code to \nassess risks that may arise from unreliable downstream decision-making. \nValue Chain and Component \nIntegration; Dangerous, Violent, or \nHateful Content',
'Scheurer, J. et al. (2023) Technical report: Large language models can strategically deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590 \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \nShevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324 \nShumailov, I. et al. (2023) The curse of recursion: training on generated data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388 \nSoice, E. et al. (2023) Can large language models democratize access to dual-use biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 高維向量映射:能夠將句子和段落映射到384維的密集向量空間。
- 多任務支持:可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等多種自然語言處理任務。
📦 安裝指南
要使用本模型,需要安裝 sentence-transformers
庫,可使用以下命令進行安裝:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
# 從🤗 Hub下載模型
model = SentenceTransformer("sentence_transformers_model_id")
# 進行推理
sentences = [
'What does this text say about data privacy?',
'information during GAI training and maintenance. \nHuman-AI Configuration; Obscene, \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration; \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or levels of harmful bias, intellectual property infringement, \ndata privacy violations, obscenity, extremism, violence, or CBRN information in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety features of fine-tuned models when the negative risk exceeds \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review GAI system outputs for validity and safety: Review generated code to \nassess risks that may arise from unreliable downstream decision-making. \nValue Chain and Component \nIntegration; Dangerous, Violent, or \nHateful Content',
'Scheurer, J. et al. (2023) Technical report: Large language models can strategically deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590 \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \nShevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324 \nShumailov, I. et al. (2023) The curse of recursion: training on generated data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388 \nSoice, E. et al. (2023) Can large language models democratize access to dual-use biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器 |
基礎模型 | sentence-transformers/all-MiniLM-L6-v2 |
最大序列長度 | 256個詞元 |
輸出維度 | 384個詞元 |
相似度函數 | 餘弦相似度 |
模型資源
- 文檔:Sentence Transformers文檔
- 代碼倉庫:GitHub上的Sentence Transformers
- Hugging Face:Hugging Face上的Sentence Transformers
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
訓練詳情
訓練數據集
未命名數據集
- 數據集大小:555個訓練樣本
- 列信息:
<code>sentence_0</code>
和<code>sentence_1</code>
- 近似統計信息(基於前555個樣本):
sentence_0 sentence_1 類型 字符串 字符串 詳情 - 最小:10個詞元
- 平均:11.2個詞元
- 最大:12個詞元
- 最小:156個詞元
- 平均:199.37個詞元
- 最大:256個詞元
- 樣本示例:
sentence_0 sentence_1 What does this text say about trustworthiness?
other systems.
Information Integrity; Value Chain
and Component Integration
MP-2.2-002
Observe and analyze how the GAI system interacts with external networks, and
identify any potential for negative externalities, particularly where content
provenance might be compromised.
Information Integrity
AI Actor Tasks: End Users
MAP 2.3: Scientific integrity and TEVV considerations are identified and documented, including those related to experimental
design, data collection and selection (e.g., availability, representativeness, suitability), system trustworthiness, and construct
validation
Action ID
Suggested Action
GAI Risks
MP-2.3-001
Assess the accuracy, quality, reliability, and authenticity of GAI output by
comparing it to a set of known ground truth data and by using a variety of
evaluation methods (e.g., human oversight and automated evaluation, proven
cryptographic techniques, review of content inputs).
Information Integrity
25What does this text say about unclassified?
training and TEVV data; Filtering of hate speech or content in GAI system
training data; Prevalence of GAI-generated data in GAI system training data.
Harmful Bias and Homogenization
15 Winogender Schemas is a sample set of paired sentences which differ only by gender of the pronouns used,
which can be used to evaluate gender bias in natural language processing coreference resolution systems.
37
MS-2.11-005
Assess the proportion of synthetic to non-synthetic training data and verify
training data is not overly homogenous or GAI-produced to mitigate concerns of
model collapse.
Harmful Bias and Homogenization
AI Actor Tasks: AI Deployment, AI Impact Assessment, Affected Individuals and Communities, Domain Experts, End-Users,
Operation and Monitoring, TEVV
MEASURE 2.12: Environmental impact and sustainability of AI model training and management activities – as identified in the MAP
function – are assessed and documented.
Action ID
Suggested Action
GAI RisksWhat does this text say about unclassified?
Padmakumar, V. et al. (2024) Does writing with language models reduce content diversity? ICLR.
https://arxiv.org/pdf/2309.05196
Park, P. et. al. (2024) AI deception: A survey of examples, risks, and potential solutions. Patterns, 5(5).
arXiv. https://arxiv.org/pdf/2308.14752
Partnership on AI (2023) Building a Glossary for Synthetic Media Transparency Methods, Part 1: Indirect
Disclosure. https://partnershiponai.org/glossary-for-synthetic-media-transparency-methods-part-1-
indirect-disclosure/
Qu, Y. et al. (2023) Unsafe Diffusion: On the Generation of Unsafe Images and Hateful Memes From Text-
To-Image Models. arXiv. https://arxiv.org/pdf/2305.13873
Rafat, K. et al. (2023) Mitigating carbon footprint for knowledge distillation based deep learning model
compression. PLOS One. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285668
Said, I. et al. (2022) Nonconsensual Distribution of Intimate Images: Exploring the Role of Legal Attitudes
訓練損失函數
使用 MultipleNegativesRankingLoss
損失函數,參數如下:
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
訓練超參數
非默認超參數
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
所有超參數
點擊展開
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
框架版本
- Python:3.11.5
- Sentence Transformers:3.1.1
- Transformers:4.44.2
- PyTorch:2.4.1+cpu
- Accelerate:0.34.2
- Datasets:3.0.0
- Tokenizers:0.19.1
🔧 技術細節
本模型基於 sentence-transformers
框架,從 sentence-transformers/all-MiniLM-L6-v2
微調而來。模型結構包含 Transformer
層、Pooling
層和 Normalize
層,具體如下:
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
在訓練過程中,使用了 MultipleNegativesRankingLoss
損失函數,並設置了相應的超參數,以優化模型性能。
📄 許可證
文檔中未提及相關許可證信息。
📖 引用
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98