Stella En 400M V5 FinanceRAG V2
S
Stella En 400M V5 FinanceRAG V2
由 thomaskim1130 开发
基于stella_en_400M_v5架构优化的金融领域检索增强生成模型,支持金融文档的语义检索和段落匹配
下载量 555
发布时间 : 11/29/2024
模型简介
该模型专门针对金融文档检索任务优化,能够理解复杂金融查询并匹配相关文本段落。使用多重负样本排序损失训练,适用于问答系统和金融信息检索场景。
模型特点
金融领域优化
针对财务报表、金融术语等专业内容进行专门训练,提高金融文档的理解能力
高效段落检索
能够从长篇金融文档中精准定位与查询相关的关键段落
多重负样本训练
使用多重负样本排序损失(Multiple Negatives Ranking Loss)提高区分相似段落的能力
模型能力
金融文档语义检索
查询-段落相似度计算
金融问答系统支持
长文本关键信息定位
使用案例
金融信息检索
财务报表查询
根据具体财务指标查询相关报表段落
准确检索包含特定财务数据的表格和说明
监管文件分析
在SEC文件或年报中定位特定政策描述
快速找到合规性相关的关键段落
投资研究
公司财务数据提取
检索特定季度或年度的财务绩效数据
精确匹配包含查询指标的财务表格和上下文
🚀 基于thomaskim1130/stella_en_400M_v5-FinanceRAG的句子转换器
这是一个基于thomaskim1130/stella_en_400M_v5-FinanceRAG微调的sentence-transformers模型。它可以将句子和段落映射到一个1024维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
✨ 主要特性
- 语义理解:能够深入理解句子和段落的语义信息,将其准确映射到1024维的向量空间中。
- 多任务支持:可广泛应用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等多种自然语言处理任务。
- 微调优化:基于特定数据集进行微调,针对特定领域或任务进行了优化,提高了模型在相关任务上的性能。
📦 安装指南
首先安装Sentence Transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从🤗 Hub下载模型
model = SentenceTransformer("sentence_transformers_model_id")
# 运行推理
sentences = [
"Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Title: \nText: In the year with lowest amount of Deposits with banks Average volume, what's the increasing rate of Deposits with banks Average volume?",
'Title: \nText: Additional Interest Rate Details Average Balances and Interest Ratesé\x88¥æ\x93\x9cssets(1)(2)(3)(4)\n| | Average volume | Interest revenue | % Average rate |\n| In millions of dollars, except rates | 2015 | 2014 | 2013 | 2015 | 2014 | 2013 | 2015 | 2014 | 2013 |\n| Assets | | | | | | | | | |\n| Deposits with banks-5 | $133,790 | $161,359 | $144,904 | $727 | $959 | $1,026 | 0.54% | 0.59% | 0.71% |\n| Federal funds sold and securities borrowed or purchased under agreements to resell-6 | | | | | | | | | |\n| In U.S. offices | $150,359 | $153,688 | $158,237 | $1,211 | $1,034 | $1,133 | 0.81% | 0.67% | 0.72% |\n| In offices outside the U.S.-5 | 84,006 | 101,177 | 109,233 | 1,305 | 1,332 | 1,433 | 1.55 | 1.32 | 1.31 |\n| Total | $234,365 | $254,865 | $267,470 | $2,516 | $2,366 | $2,566 | 1.07% | 0.93% | 0.96% |\n| Trading account assets-7(8) | | | | | | | | | |\n| In U.S. offices | $114,639 | $114,910 | $126,123 | $3,945 | $3,472 | $3,728 | 3.44% | 3.02% | 2.96% |\n| In offices outside the U.S.-5 | 103,348 | 119,801 | 127,291 | 2,141 | 2,538 | 2,683 | 2.07 | 2.12 | 2.11 |\n| Total | $217,987 | $234,711 | $253,414 | $6,086 | $6,010 | $6,411 | 2.79% | 2.56% | 2.53% |\n| Investments | | | | | | | | | |\n| In U.S. offices | | | | | | | | | |\n| Taxable | $214,714 | $188,910 | $174,084 | $3,812 | $3,286 | $2,713 | 1.78% | 1.74% | 1.56% |\n| Exempt from U.S. income tax | 20,034 | 20,386 | 18,075 | 443 | 626 | 811 | 2.21 | 3.07 | 4.49 |\n| In offices outside the U.S.-5 | 102,376 | 113,163 | 114,122 | 3,071 | 3,627 | 3,761 | 3.00 | 3.21 | 3.30 |\n| Total | $337,124 | $322,459 | $306,281 | $7,326 | $7,539 | $7,285 | 2.17% | 2.34% | 2.38% |\n| Loans (net of unearned income)(9) | | | | | | | | | |\n| In U.S. offices | $354,439 | $361,769 | $354,707 | $24,558 | $26,076 | $25,941 | 6.93% | 7.21% | 7.31% |\n| In offices outside the U.S.-5 | 273,072 | 296,656 | 292,852 | 15,988 | 18,723 | 19,660 | 5.85 | 6.31 | 6.71 |\n| Total | $627,511 | $658,425 | $647,559 | $40,546 | $44,799 | $45,601 | 6.46% | 6.80% | 7.04% |\n| Other interest-earning assets-10 | $55,060 | $40,375 | $38,233 | $1,839 | $507 | $602 | 3.34% | 1.26% | 1.57% |\n| Total interest-earning assets | $1,605,837 | $1,672,194 | $1,657,861 | $59,040 | $62,180 | $63,491 | 3.68% | 3.72% | 3.83% |\n| Non-interest-earning assets-7 | $218,000 | $224,721 | $222,526 | | | | | | |\n| Total assets from discontinued operations | — | — | 2,909 | | | | | | |\n| Total assets | $1,823,837 | $1,896,915 | $1,883,296 | | | | | | |\nNet interest revenue includes the taxable equivalent adjustments related to the tax-exempt bond portfolio (based on the U. S. federal statutory tax rate of 35%) of $487 million, $498 million and $521 million for 2015, 2014 and 2013, respectively.\nInterest rates and amounts include the effects of risk management activities associated with the respective asset categories.\nMonthly or quarterly averages have been used by certain subsidiaries where daily averages are unavailable.\nDetailed average volume, Interest revenue and Interest expense exclude Discontinued operations.\nSee Note 2 to the Consolidated Financial Statements.\nAverage rates reflect prevailing local interest rates, including inflationary effects and monetary corrections in certain countries.\nAverage volumes of securities borrowed or purchased under agreements to resell are reported net pursuant to ASC 210-20-45.\nHowever, Interest revenue excludes the impact of ASC 210-20-45.\nThe fair value carrying amounts of derivative contracts are reported net, pursuant to ASC 815-10-45, in Non-interest-earning assets and Other non-interest bearing liabilities.\nInterest expense on Trading account liabilities of ICG is reported as a reduction of Interest revenue.\nInterest revenue and Interest expense on cash collateral positions are reported in interest on Trading account assets and Trading account liabilities, respectively.\nIncludes cash-basis loans.\nIncludes brokerage receivables.\nDuring 2015, continued management actions, primarily the sale or transfer to held-for-sale of approximately $1.5 billion of delinquent residential first mortgages, including $0.9 billion in the fourth quarter largely associated with the transfer of CitiFinancial loans to held-for-sale referenced above, were the primary driver of the overall improvement in delinquencies within Citi Holdings\x80\x99 residential first mortgage portfolio.\nCredit performance from quarter to quarter could continue to be impacted by the amount of delinquent loan sales or transfers to held-for-sale, as well as overall trends in HPI and interest rates.\nNorth America Residential First Mortgages\x80\x94State Delinquency Trends The following tables set forth the six U. S. states and/or regions with the highest concentration of Citi\x80\x99s residential first mortgages.\n| In billions of dollars | December 31, 2015 | December 31, 2014 |\n| State-1 | ENR-2 | ENRDistribution | 90+DPD% | %LTV >100%-3 | RefreshedFICO | ENR-2 | ENRDistribution | 90+DPD% | %LTV >100%-3 | RefreshedFICO |\n| CA | $19.2 | 37% | 0.2% | 1% | 754 | $18.9 | 31% | 0.6% | 2% | 745 |\n| NY/NJ/CT-4 | 12.7 | 25 | 0.8 | 1 | 751 | 12.2 | 20 | 1.9 | 2 | 740 |\n| VA/MD | 2.2 | 4 | 1.2 | 2 | 719 | 3.0 | 5 | 3.0 | 8 | 695 |\n| IL-4 | 2.2 | 4 | 1.0 | 3 | 735 | 2.5 | 4 | 2.5 | 9 | 713 |\n| FL-4 | 2.2 | 4 | 1.1 | 4 | 723 | 2.8 | 5 | 3.0 | 14 | 700 |\n| TX | 1.9 | 4 | 1.0 | — | 711 | 2.5 | 4 | 2.7 | — | 680 |\n| Other | 11.0 | 21 | 1.3 | 2 | 710 | 18.2 | 30 | 3.3 | 7 | 677 |\n| Total-5 | $51.5 | 100% | 0.7% | 1% | 738 | $60.1 | 100% | 2.1% | 4% | 715 |\nNote: Totals may not sum due to rounding.\n(1) Certain of the states are included as part of a region based on Citi\x80\x99s view of similar HPI within the region.\n(2) Ending net receivables.\nExcludes loans in Canada and Puerto Rico, loans guaranteed by U. S. government agencies, loans recorded at fair value and loans subject to long term standby commitments (LTSCs).\nExcludes balances for which FICO or LTV data are unavailable.\n(3) LTV ratios (loan balance divided by appraised value) are calculated at origination and updated by applying market price data.\n(4) New York, New Jersey, Connecticut, Florida and Illinois are judicial states.\n(5) Improvement in state trends during 2015 was primarily due to the sale or transfer to held-for-sale of residential first mortgages, including the transfer of CitiFinancial residential first mortgages to held-for-sale in the fourth quarter of 2015.\nForeclosures A substantial majority of Citi\x80\x99s foreclosure inventory consists of residential first mortgages.\nAt December 31, 2015, Citi\x80\x99s foreclosure inventory included approximately $0.1 billion, or 0.2%, of the total residential first mortgage portfolio, compared to $0.6 billion, or 0.9%, at December 31, 2014, based on the dollar amount of ending net receivables of loans in foreclosure inventory, excluding loans that are guaranteed by U. S. government agencies and loans subject to LTSCs.\nNorth America Consumer Mortgage Quarterly Credit Trends \x80\x94Net Credit Losses and Delinquencies\x80\x94Home Equity Loans Citi\x80\x99s home equity loan portfolio consists of both fixed-rate home equity loans and loans extended under home equity lines of credit.\nFixed-rate home equity loans are fully amortizing.\nHome equity lines of credit allow for amounts to be drawn for a period of time with the payment of interest only and then, at the end of the draw period, the then-outstanding amount is converted to an amortizing loan (the interest-only payment feature during the revolving period is standard for this product across the industry).\nAfter conversion, the home equity loans typically have a 20-year amortization period.\nAs of December 31, 2015, Citi\x80\x99s home equity loan portfolio of $22.8 billion consisted of $6.3 billion of fixed-rate home equity loans and $16.5 billion of loans extended under home equity lines of credit (Revolving HELOCs).',
'Title: \nText: Issuer Purchases of Equity Securities Repurchases of common stock are made to support the Company\x80\x99s stock-based employee compensation plans and for other corporate purposes.\nOn February 13, 2006, the Board of Directors authorized the purchase of $2.0 billion of the Company\x80\x99s common stock between February 13, 2006 and February 28, 2007.\nIn August 2006, 3M\x80\x99s Board of Directors authorized the repurchase of an additional $1.0 billion in share repurchases, raising the total authorization to $3.0 billion for the period from February 13, 2006 to February 28, 2007.\nIn February 2007, 3M\x80\x99s Board of Directors authorized a twoyear share repurchase of up to $7.0 billion for the period from February 12, 2007 to February 28, 2009.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | thomaskim1130/stella_en_400M_v5-FinanceRAG |
最大序列长度 | 512个标记 |
输出维度 | 1024个标记 |
相似度函数 | 余弦相似度 |
模型来源
- 文档:Sentence Transformers文档
- 仓库:GitHub上的Sentence Transformers
- Hugging Face:Hugging Face上的Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
评估
指标
信息检索
- 数据集:
Evaluate
- 评估方法:使用
InformationRetrievalEvaluator
进行评估
指标 | 值 |
---|---|
cosine_accuracy@1 | 0.4636 |
cosine_accuracy@3 | 0.682 |
cosine_accuracy@5 | 0.7597 |
cosine_accuracy@10 | 0.8519 |
cosine_precision@1 | 0.4636 |
cosine_precision@3 | 0.2565 |
cosine_precision@5 | 0.1777 |
cosine_precision@10 | 0.1024 |
cosine_recall@1 | 0.4095 |
cosine_recall@3 | 0.6424 |
cosine_recall@5 | 0.7299 |
cosine_recall@10 | 0.8398 |
cosine_ndcg@10 | 0.6409 |
cosine_mrr@10 | 0.5902 |
cosine_map@100 | 0.5753 |
dot_accuracy@1 | 0.4393 |
dot_accuracy@3 | 0.6748 |
dot_accuracy@5 | 0.7354 |
dot_accuracy@10 | 0.8422 |
dot_precision@1 | 0.4393 |
dot_precision@3 | 0.25 |
dot_precision@5 | 0.1709 |
dot_precision@10 | 0.0998 |
dot_recall@1 | 0.3828 |
dot_recall@3 | 0.6338 |
dot_recall@5 | 0.7005 |
dot_recall@10 | 0.8224 |
dot_ndcg@10 | 0.6195 |
dot_mrr@10 | 0.5712 |
dot_map@100 | 0.5528 |
训练详情
训练数据集
未命名数据集
-
规模:2256个训练样本
-
列信息:包含
sentence_0
和sentence_1
两列 -
近似统计信息(基于前1000个样本):
sentence_0 sentence_1 类型 字符串 字符串 详情 - 最小:28个标记
- 平均:45.02个标记
- 最大:114个标记
- 最小:23个标记
- 平均:406.36个标记
- 最大:512个标记
-
样本示例:
sentence_0 sentence_1 Instruct: Given a web search query, retrieve relevant passages that answer the query.
Query: Title:
Text: What do all Notional sum up, excluding those negative ones in 2008 for As of December 31, 2008 for Financial assets with interest rate risk? (in million)Title:
Text: Cash Flows Our estimated future benefit payments for funded and unfunded plans are as follows (in millions):
1 The expected benefit payments for our other postretirement benefit plans are net of estimated federal subsidies expected to be received under the Medicare Prescription Drug, Improvement and Modernization Act of 2003.
Federal subsidies are estimated to be $3 million for the period 2019-2023 and $2 million for the period 2024-2028.
The Company anticipates making pension contributions in 2019 of $32 million, all of which will be allocated to our international plans.
The majority of these contributions are required by funding regulations or law.Instruct: Given a web search query, retrieve relevant passages that answer the query.
Query: Title:
Text: what's the total amount of No surrender charge of 2010 Individual Fixed Annuities, Change in cash of 2008, and Total reserves of 2010 Individual Variable Annuities ?Title:
Text: 2010 and 2009 Comparison Surrender rates have improved compared to the prior year for group retirement products, individual fixed annuities and individual variable annuities as surrenders have returned to more normal levels.
Surrender rates for individual fixed annuities have decreased significantly in 2010 due to the low interest rate environment and the relative competitiveness of interest credited rates on the existing block of fixed annuities versus interest rates on alternative investment options available in the marketplace.
Surrender rates for group retirement products are expected to increase in 2011 as certain large group surrenders are anticipated.2009 and 2008 Comparison Surrenders and other withdrawals increased in 2009 for group retirement products primarily due to higher large group surrenders.
However, surrender rates and withdrawals have improved for individual fixed annuities and individual variable annuities.
The following table presents reserves by surrender charge category and surrender rates:Instruct: Given a web search query, retrieve relevant passages that answer the query.
Query: Title:
Text: What was the total amount of elements for RevPAR excluding those elements greater than 150 in 2016 ?Title:
Text: 2016 Compared to 2015 Comparable?Company-Operated North American Properties -
损失函数:使用
MultipleNegativesRankingLoss
,参数如下:{ "scale": 20.0, "similarity_fct": "cos_sim" }
训练超参数
非默认超参数
eval_strategy
:按步骤评估per_device_train_batch_size
:16per_device_eval_batch_size
:16num_train_epochs
:2fp16
:Truebatch_sampler
:无重复采样multi_dataset_batch_sampler
:循环采样
所有超参数
点击展开
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:stepsprediction_loss_only
:Trueper_device_train_batch_size
:16per_device_eval_batch_size
:16per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:1eval_accumulation_steps
:Nonetorch_empty_cache_steps
:Nonelearning_rate
:5e-05weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1num_train_epochs
:2max_steps
:-1lr_scheduler_type
:linearlr_scheduler_kwargs
:{}warmup_ratio
:0.0warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Falsefp16
:Truefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:0dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Falseignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torchoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Falsehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseeval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Nonedispatch_batches
:Nonesplit_batches
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseeval_on_start
:Falseuse_liger_kernel
:Falseeval_use_gather_object
:Falsebatch_sampler
:no_duplicatesmulti_dataset_batch_sampler
:round_robin
训练日志
轮次 | 步骤 | Evaluate_cosine_map@100 |
---|---|---|
0 | 0 | 0.4564 |
1.0 | 141 | 0.5233 |
2.0 | 282 | 0.5753 |
框架版本
- Python:3.10.12
- Sentence Transformers:3.1.1
- Transformers:4.45.2
- PyTorch:2.5.1+cu121
- Accelerate:1.1.1
- Datasets:3.1.0
- Tokenizers:0.20.3
📄 许可证
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Phi 2 GGUF
其他
Phi-2是微软开发的一个小型但强大的语言模型,具有27亿参数,专注于高效推理和高质量文本生成。
大型语言模型 支持多种语言
P
TheBloke
41.5M
205
Roberta Large
MIT
基于掩码语言建模目标预训练的大型英语语言模型,采用改进的BERT训练方法
大型语言模型 英语
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基础模型的蒸馏版本,在保持相近性能的同时更轻量高效,适用于序列分类、标记分类等自然语言处理任务。
大型语言模型 英语
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一个多语言大语言模型,针对多语言对话用例进行了优化,在常见的行业基准测试中表现优异。
大型语言模型 英语
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基于100种语言的2.5TB过滤CommonCrawl数据预训练的多语言模型,采用掩码语言建模目标进行训练。
大型语言模型 支持多种语言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基于Transformer架构的英语预训练模型,通过掩码语言建模目标在海量文本上训练,支持文本特征提取和下游任务微调
大型语言模型 英语
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI发布的开放预训练Transformer语言模型套件,参数量从1.25亿到1750亿,旨在对标GPT-3系列性能,同时促进大规模语言模型的开放研究。
大型语言模型 英语
O
facebook
6.3M
198
1
基于transformers库的预训练模型,适用于多种NLP任务
大型语言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多语言大语言模型系列,包含8B、70B和405B参数规模,支持8种语言和代码生成,优化了多语言对话场景。
大型语言模型
Transformers 支持多种语言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基础版是由Google开发的文本到文本转换Transformer模型,参数规模2.2亿,支持多语言NLP任务。
大型语言模型 支持多种语言
T
google-t5
5.4M
702
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98