Stella En 400M V5 FinanceRAG V2
S
Stella En 400M V5 FinanceRAG V2
由thomaskim1130開發
基於stella_en_400M_v5架構優化的金融領域檢索增強生成模型,支持金融文檔的語義檢索和段落匹配
下載量 555
發布時間 : 11/29/2024
模型概述
該模型專門針對金融文檔檢索任務優化,能夠理解複雜金融查詢並匹配相關文本段落。使用多重負樣本排序損失訓練,適用於問答系統和金融信息檢索場景。
模型特點
金融領域優化
針對財務報表、金融術語等專業內容進行專門訓練,提高金融文檔的理解能力
高效段落檢索
能夠從長篇金融文檔中精準定位與查詢相關的關鍵段落
多重負樣本訓練
使用多重負樣本排序損失(Multiple Negatives Ranking Loss)提高區分相似段落的能力
模型能力
金融文檔語義檢索
查詢-段落相似度計算
金融問答系統支持
長文本關鍵信息定位
使用案例
金融信息檢索
財務報表查詢
根據具體財務指標查詢相關報表段落
準確檢索包含特定財務數據的表格和說明
監管文件分析
在SEC文件或年報中定位特定政策描述
快速找到合規性相關的關鍵段落
投資研究
公司財務數據提取
檢索特定季度或年度的財務績效數據
精確匹配包含查詢指標的財務表格和上下文
🚀 基於thomaskim1130/stella_en_400M_v5-FinanceRAG的句子轉換器
這是一個基於thomaskim1130/stella_en_400M_v5-FinanceRAG微調的sentence-transformers模型。它可以將句子和段落映射到一個1024維的密集向量空間,可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等任務。
✨ 主要特性
- 語義理解:能夠深入理解句子和段落的語義信息,將其準確映射到1024維的向量空間中。
- 多任務支持:可廣泛應用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等多種自然語言處理任務。
- 微調優化:基於特定數據集進行微調,針對特定領域或任務進行了優化,提高了模型在相關任務上的性能。
📦 安裝指南
首先安裝Sentence Transformers
庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
# 從🤗 Hub下載模型
model = SentenceTransformer("sentence_transformers_model_id")
# 運行推理
sentences = [
"Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Title: \nText: In the year with lowest amount of Deposits with banks Average volume, what's the increasing rate of Deposits with banks Average volume?",
'Title: \nText: Additional Interest Rate Details Average Balances and Interest Ratesé\x88¥æ\x93\x9cssets(1)(2)(3)(4)\n| | Average volume | Interest revenue | % Average rate |\n| In millions of dollars, except rates | 2015 | 2014 | 2013 | 2015 | 2014 | 2013 | 2015 | 2014 | 2013 |\n| Assets | | | | | | | | | |\n| Deposits with banks-5 | $133,790 | $161,359 | $144,904 | $727 | $959 | $1,026 | 0.54% | 0.59% | 0.71% |\n| Federal funds sold and securities borrowed or purchased under agreements to resell-6 | | | | | | | | | |\n| In U.S. offices | $150,359 | $153,688 | $158,237 | $1,211 | $1,034 | $1,133 | 0.81% | 0.67% | 0.72% |\n| In offices outside the U.S.-5 | 84,006 | 101,177 | 109,233 | 1,305 | 1,332 | 1,433 | 1.55 | 1.32 | 1.31 |\n| Total | $234,365 | $254,865 | $267,470 | $2,516 | $2,366 | $2,566 | 1.07% | 0.93% | 0.96% |\n| Trading account assets-7(8) | | | | | | | | | |\n| In U.S. offices | $114,639 | $114,910 | $126,123 | $3,945 | $3,472 | $3,728 | 3.44% | 3.02% | 2.96% |\n| In offices outside the U.S.-5 | 103,348 | 119,801 | 127,291 | 2,141 | 2,538 | 2,683 | 2.07 | 2.12 | 2.11 |\n| Total | $217,987 | $234,711 | $253,414 | $6,086 | $6,010 | $6,411 | 2.79% | 2.56% | 2.53% |\n| Investments | | | | | | | | | |\n| In U.S. offices | | | | | | | | | |\n| Taxable | $214,714 | $188,910 | $174,084 | $3,812 | $3,286 | $2,713 | 1.78% | 1.74% | 1.56% |\n| Exempt from U.S. income tax | 20,034 | 20,386 | 18,075 | 443 | 626 | 811 | 2.21 | 3.07 | 4.49 |\n| In offices outside the U.S.-5 | 102,376 | 113,163 | 114,122 | 3,071 | 3,627 | 3,761 | 3.00 | 3.21 | 3.30 |\n| Total | $337,124 | $322,459 | $306,281 | $7,326 | $7,539 | $7,285 | 2.17% | 2.34% | 2.38% |\n| Loans (net of unearned income)(9) | | | | | | | | | |\n| In U.S. offices | $354,439 | $361,769 | $354,707 | $24,558 | $26,076 | $25,941 | 6.93% | 7.21% | 7.31% |\n| In offices outside the U.S.-5 | 273,072 | 296,656 | 292,852 | 15,988 | 18,723 | 19,660 | 5.85 | 6.31 | 6.71 |\n| Total | $627,511 | $658,425 | $647,559 | $40,546 | $44,799 | $45,601 | 6.46% | 6.80% | 7.04% |\n| Other interest-earning assets-10 | $55,060 | $40,375 | $38,233 | $1,839 | $507 | $602 | 3.34% | 1.26% | 1.57% |\n| Total interest-earning assets | $1,605,837 | $1,672,194 | $1,657,861 | $59,040 | $62,180 | $63,491 | 3.68% | 3.72% | 3.83% |\n| Non-interest-earning assets-7 | $218,000 | $224,721 | $222,526 | | | | | | |\n| Total assets from discontinued operations | — | — | 2,909 | | | | | | |\n| Total assets | $1,823,837 | $1,896,915 | $1,883,296 | | | | | | |\nNet interest revenue includes the taxable equivalent adjustments related to the tax-exempt bond portfolio (based on the U. S. federal statutory tax rate of 35%) of $487 million, $498 million and $521 million for 2015, 2014 and 2013, respectively.\nInterest rates and amounts include the effects of risk management activities associated with the respective asset categories.\nMonthly or quarterly averages have been used by certain subsidiaries where daily averages are unavailable.\nDetailed average volume, Interest revenue and Interest expense exclude Discontinued operations.\nSee Note 2 to the Consolidated Financial Statements.\nAverage rates reflect prevailing local interest rates, including inflationary effects and monetary corrections in certain countries.\nAverage volumes of securities borrowed or purchased under agreements to resell are reported net pursuant to ASC 210-20-45.\nHowever, Interest revenue excludes the impact of ASC 210-20-45.\nThe fair value carrying amounts of derivative contracts are reported net, pursuant to ASC 815-10-45, in Non-interest-earning assets and Other non-interest bearing liabilities.\nInterest expense on Trading account liabilities of ICG is reported as a reduction of Interest revenue.\nInterest revenue and Interest expense on cash collateral positions are reported in interest on Trading account assets and Trading account liabilities, respectively.\nIncludes cash-basis loans.\nIncludes brokerage receivables.\nDuring 2015, continued management actions, primarily the sale or transfer to held-for-sale of approximately $1.5 billion of delinquent residential first mortgages, including $0.9 billion in the fourth quarter largely associated with the transfer of CitiFinancial loans to held-for-sale referenced above, were the primary driver of the overall improvement in delinquencies within Citi Holdings\x80\x99 residential first mortgage portfolio.\nCredit performance from quarter to quarter could continue to be impacted by the amount of delinquent loan sales or transfers to held-for-sale, as well as overall trends in HPI and interest rates.\nNorth America Residential First Mortgages\x80\x94State Delinquency Trends The following tables set forth the six U. S. states and/or regions with the highest concentration of Citi\x80\x99s residential first mortgages.\n| In billions of dollars | December 31, 2015 | December 31, 2014 |\n| State-1 | ENR-2 | ENRDistribution | 90+DPD% | %LTV >100%-3 | RefreshedFICO | ENR-2 | ENRDistribution | 90+DPD% | %LTV >100%-3 | RefreshedFICO |\n| CA | $19.2 | 37% | 0.2% | 1% | 754 | $18.9 | 31% | 0.6% | 2% | 745 |\n| NY/NJ/CT-4 | 12.7 | 25 | 0.8 | 1 | 751 | 12.2 | 20 | 1.9 | 2 | 740 |\n| VA/MD | 2.2 | 4 | 1.2 | 2 | 719 | 3.0 | 5 | 3.0 | 8 | 695 |\n| IL-4 | 2.2 | 4 | 1.0 | 3 | 735 | 2.5 | 4 | 2.5 | 9 | 713 |\n| FL-4 | 2.2 | 4 | 1.1 | 4 | 723 | 2.8 | 5 | 3.0 | 14 | 700 |\n| TX | 1.9 | 4 | 1.0 | — | 711 | 2.5 | 4 | 2.7 | — | 680 |\n| Other | 11.0 | 21 | 1.3 | 2 | 710 | 18.2 | 30 | 3.3 | 7 | 677 |\n| Total-5 | $51.5 | 100% | 0.7% | 1% | 738 | $60.1 | 100% | 2.1% | 4% | 715 |\nNote: Totals may not sum due to rounding.\n(1) Certain of the states are included as part of a region based on Citi\x80\x99s view of similar HPI within the region.\n(2) Ending net receivables.\nExcludes loans in Canada and Puerto Rico, loans guaranteed by U. S. government agencies, loans recorded at fair value and loans subject to long term standby commitments (LTSCs).\nExcludes balances for which FICO or LTV data are unavailable.\n(3) LTV ratios (loan balance divided by appraised value) are calculated at origination and updated by applying market price data.\n(4) New York, New Jersey, Connecticut, Florida and Illinois are judicial states.\n(5) Improvement in state trends during 2015 was primarily due to the sale or transfer to held-for-sale of residential first mortgages, including the transfer of CitiFinancial residential first mortgages to held-for-sale in the fourth quarter of 2015.\nForeclosures A substantial majority of Citi\x80\x99s foreclosure inventory consists of residential first mortgages.\nAt December 31, 2015, Citi\x80\x99s foreclosure inventory included approximately $0.1 billion, or 0.2%, of the total residential first mortgage portfolio, compared to $0.6 billion, or 0.9%, at December 31, 2014, based on the dollar amount of ending net receivables of loans in foreclosure inventory, excluding loans that are guaranteed by U. S. government agencies and loans subject to LTSCs.\nNorth America Consumer Mortgage Quarterly Credit Trends \x80\x94Net Credit Losses and Delinquencies\x80\x94Home Equity Loans Citi\x80\x99s home equity loan portfolio consists of both fixed-rate home equity loans and loans extended under home equity lines of credit.\nFixed-rate home equity loans are fully amortizing.\nHome equity lines of credit allow for amounts to be drawn for a period of time with the payment of interest only and then, at the end of the draw period, the then-outstanding amount is converted to an amortizing loan (the interest-only payment feature during the revolving period is standard for this product across the industry).\nAfter conversion, the home equity loans typically have a 20-year amortization period.\nAs of December 31, 2015, Citi\x80\x99s home equity loan portfolio of $22.8 billion consisted of $6.3 billion of fixed-rate home equity loans and $16.5 billion of loans extended under home equity lines of credit (Revolving HELOCs).',
'Title: \nText: Issuer Purchases of Equity Securities Repurchases of common stock are made to support the Company\x80\x99s stock-based employee compensation plans and for other corporate purposes.\nOn February 13, 2006, the Board of Directors authorized the purchase of $2.0 billion of the Company\x80\x99s common stock between February 13, 2006 and February 28, 2007.\nIn August 2006, 3M\x80\x99s Board of Directors authorized the repurchase of an additional $1.0 billion in share repurchases, raising the total authorization to $3.0 billion for the period from February 13, 2006 to February 28, 2007.\nIn February 2007, 3M\x80\x99s Board of Directors authorized a twoyear share repurchase of up to $7.0 billion for the period from February 12, 2007 to February 28, 2009.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器 |
基礎模型 | thomaskim1130/stella_en_400M_v5-FinanceRAG |
最大序列長度 | 512個標記 |
輸出維度 | 1024個標記 |
相似度函數 | 餘弦相似度 |
模型來源
- 文檔:Sentence Transformers文檔
- 倉庫:GitHub上的Sentence Transformers
- Hugging Face:Hugging Face上的Sentence Transformers
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
評估
指標
信息檢索
- 數據集:
Evaluate
- 評估方法:使用
InformationRetrievalEvaluator
進行評估
指標 | 值 |
---|---|
cosine_accuracy@1 | 0.4636 |
cosine_accuracy@3 | 0.682 |
cosine_accuracy@5 | 0.7597 |
cosine_accuracy@10 | 0.8519 |
cosine_precision@1 | 0.4636 |
cosine_precision@3 | 0.2565 |
cosine_precision@5 | 0.1777 |
cosine_precision@10 | 0.1024 |
cosine_recall@1 | 0.4095 |
cosine_recall@3 | 0.6424 |
cosine_recall@5 | 0.7299 |
cosine_recall@10 | 0.8398 |
cosine_ndcg@10 | 0.6409 |
cosine_mrr@10 | 0.5902 |
cosine_map@100 | 0.5753 |
dot_accuracy@1 | 0.4393 |
dot_accuracy@3 | 0.6748 |
dot_accuracy@5 | 0.7354 |
dot_accuracy@10 | 0.8422 |
dot_precision@1 | 0.4393 |
dot_precision@3 | 0.25 |
dot_precision@5 | 0.1709 |
dot_precision@10 | 0.0998 |
dot_recall@1 | 0.3828 |
dot_recall@3 | 0.6338 |
dot_recall@5 | 0.7005 |
dot_recall@10 | 0.8224 |
dot_ndcg@10 | 0.6195 |
dot_mrr@10 | 0.5712 |
dot_map@100 | 0.5528 |
訓練詳情
訓練數據集
未命名數據集
-
規模:2256個訓練樣本
-
列信息:包含
sentence_0
和sentence_1
兩列 -
近似統計信息(基於前1000個樣本):
sentence_0 sentence_1 類型 字符串 字符串 詳情 - 最小:28個標記
- 平均:45.02個標記
- 最大:114個標記
- 最小:23個標記
- 平均:406.36個標記
- 最大:512個標記
-
樣本示例:
sentence_0 sentence_1 Instruct: Given a web search query, retrieve relevant passages that answer the query.
Query: Title:
Text: What do all Notional sum up, excluding those negative ones in 2008 for As of December 31, 2008 for Financial assets with interest rate risk? (in million)Title:
Text: Cash Flows Our estimated future benefit payments for funded and unfunded plans are as follows (in millions):
1 The expected benefit payments for our other postretirement benefit plans are net of estimated federal subsidies expected to be received under the Medicare Prescription Drug, Improvement and Modernization Act of 2003.
Federal subsidies are estimated to be $3 million for the period 2019-2023 and $2 million for the period 2024-2028.
The Company anticipates making pension contributions in 2019 of $32 million, all of which will be allocated to our international plans.
The majority of these contributions are required by funding regulations or law.Instruct: Given a web search query, retrieve relevant passages that answer the query.
Query: Title:
Text: what's the total amount of No surrender charge of 2010 Individual Fixed Annuities, Change in cash of 2008, and Total reserves of 2010 Individual Variable Annuities ?Title:
Text: 2010 and 2009 Comparison Surrender rates have improved compared to the prior year for group retirement products, individual fixed annuities and individual variable annuities as surrenders have returned to more normal levels.
Surrender rates for individual fixed annuities have decreased significantly in 2010 due to the low interest rate environment and the relative competitiveness of interest credited rates on the existing block of fixed annuities versus interest rates on alternative investment options available in the marketplace.
Surrender rates for group retirement products are expected to increase in 2011 as certain large group surrenders are anticipated.2009 and 2008 Comparison Surrenders and other withdrawals increased in 2009 for group retirement products primarily due to higher large group surrenders.
However, surrender rates and withdrawals have improved for individual fixed annuities and individual variable annuities.
The following table presents reserves by surrender charge category and surrender rates:Instruct: Given a web search query, retrieve relevant passages that answer the query.
Query: Title:
Text: What was the total amount of elements for RevPAR excluding those elements greater than 150 in 2016 ?Title:
Text: 2016 Compared to 2015 Comparable?Company-Operated North American Properties -
損失函數:使用
MultipleNegativesRankingLoss
,參數如下:{ "scale": 20.0, "similarity_fct": "cos_sim" }
訓練超參數
非默認超參數
eval_strategy
:按步驟評估per_device_train_batch_size
:16per_device_eval_batch_size
:16num_train_epochs
:2fp16
:Truebatch_sampler
:無重複採樣multi_dataset_batch_sampler
:循環採樣
所有超參數
點擊展開
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:stepsprediction_loss_only
:Trueper_device_train_batch_size
:16per_device_eval_batch_size
:16per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:1eval_accumulation_steps
:Nonetorch_empty_cache_steps
:Nonelearning_rate
:5e-05weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1num_train_epochs
:2max_steps
:-1lr_scheduler_type
:linearlr_scheduler_kwargs
:{}warmup_ratio
:0.0warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Falsefp16
:Truefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:0dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Falseignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torchoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Falsehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseeval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Nonedispatch_batches
:Nonesplit_batches
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseeval_on_start
:Falseuse_liger_kernel
:Falseeval_use_gather_object
:Falsebatch_sampler
:no_duplicatesmulti_dataset_batch_sampler
:round_robin
訓練日誌
輪次 | 步驟 | Evaluate_cosine_map@100 |
---|---|---|
0 | 0 | 0.4564 |
1.0 | 141 | 0.5233 |
2.0 | 282 | 0.5753 |
框架版本
- Python:3.10.12
- Sentence Transformers:3.1.1
- Transformers:4.45.2
- PyTorch:2.5.1+cu121
- Accelerate:1.1.1
- Datasets:3.1.0
- Tokenizers:0.20.3
📄 許可證
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Phi 2 GGUF
其他
Phi-2是微軟開發的一個小型但強大的語言模型,具有27億參數,專注於高效推理和高質量文本生成。
大型語言模型 支持多種語言
P
TheBloke
41.5M
205
Roberta Large
MIT
基於掩碼語言建模目標預訓練的大型英語語言模型,採用改進的BERT訓練方法
大型語言模型 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基礎模型的蒸餾版本,在保持相近性能的同時更輕量高效,適用於序列分類、標記分類等自然語言處理任務。
大型語言模型 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一個多語言大語言模型,針對多語言對話用例進行了優化,在常見的行業基準測試中表現優異。
大型語言模型 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基於100種語言的2.5TB過濾CommonCrawl數據預訓練的多語言模型,採用掩碼語言建模目標進行訓練。
大型語言模型 支持多種語言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基於Transformer架構的英語預訓練模型,通過掩碼語言建模目標在海量文本上訓練,支持文本特徵提取和下游任務微調
大型語言模型 英語
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI發佈的開放預訓練Transformer語言模型套件,參數量從1.25億到1750億,旨在對標GPT-3系列性能,同時促進大規模語言模型的開放研究。
大型語言模型 英語
O
facebook
6.3M
198
1
基於transformers庫的預訓練模型,適用於多種NLP任務
大型語言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多語言大語言模型系列,包含8B、70B和405B參數規模,支持8種語言和代碼生成,優化了多語言對話場景。
大型語言模型
Transformers 支持多種語言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基礎版是由Google開發的文本到文本轉換Transformer模型,參數規模2.2億,支持多語言NLP任務。
大型語言模型 支持多種語言
T
google-t5
5.4M
702
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98