SBERT KFOLD User Portfolio To Job Descriptions
基于sentence-transformers/all-MiniLM-L6-v2微调的句子转换器模型,用于计算句子和段落之间的语义相似度。
下载量 26
发布时间 : 12/23/2024
模型简介
该模型将句子和段落映射到384维密集向量空间,可用于语义文本相似度、语义搜索、复述挖掘、文本分类、聚类等任务。
模型特点
高精度语义理解
能够准确捕捉句子和段落之间的语义关系,计算相似度得分。
高效向量化
将文本转换为384维密集向量,便于后续处理和分析。
多任务支持
支持语义搜索、文本分类、聚类等多种自然语言处理任务。
模型能力
语义文本相似度计算
语义搜索
复述挖掘
文本分类
文本聚类
使用案例
招聘与求职
求职者与职位匹配
将求职者的个人简介与职位描述进行匹配,计算相似度得分。
帮助招聘方快速筛选合适的候选人
自由职业者项目推荐
根据自由职业者的技能描述推荐合适的项目。
提高自由职业者与项目的匹配效率
内容管理
相似内容识别
识别网站或平台上的相似内容。
帮助内容去重或推荐相关内容
🚀 基于SentenceTransformer的模型
本模型基于 sentence-transformers/all-MiniLM-L6-v2 微调而来。它能够将句子和段落映射到384维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
直接使用(Sentence Transformers)
首先安装 Sentence Transformers 库:
pip install -U sentence-transformers
然后你可以加载此模型并进行推理:
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载
model = SentenceTransformer("Nashhz/SBERT_KFOLD_User_Portfolio_to_Job_Descriptions")
# 运行推理
sentences = [
'I have 15+ years experiences with web development, machine learning engineering and product development. I also have 5+ years experiences with team management for developing new product and maintaining old products.',
"I'm starting a web development company and need a senior WordPress developer who is proficient in PHP, JavaScript, HTML, and CSS. This role will require working closely with my designer to customize websites. Key Responsibilities - Custom theme development - Communicating with the Designer - Optimising websites for performance - Ongoing website maintenance The ideal candidate should - Have expert-level experience with custom theme development - Be eager to learn and adapt - Have a solid track record with WordPress - Know the pain points of WordPress and how to solve them - Benefit Experience with SEO Collaboration - We will be using TrelloWhatsappTeams for project management and collaboration tasks. Your ability to work as part of a team and communicate effectively will be crucial for our success. A passion for web development and a desire to be part of a growing company will make this a rewarding opportunity.",
"Job Title Freelance Graphic Designer Monthly Deliverables Minimum 30 Creative Designs Budget 10,000 Month Job Description We are seeking a Freelance Graphic Designer to create high-quality and creative visuals for our projects monthly. The ideal candidate will have experience designing a wide range of materials, including images for digital platforms, brochures, banners, PDFs, and other print-ready files. This remote freelance role is expected to deliver 30 designs per month. If you're passionate about visual design and can consistently meet deadlines with high-quality work, we'd love to hear from you! Key Responsibilities Create 30+ designs per month, including - Social media graphics - Flyers, brochures, and pamphlets - PDF print files - Flex banners and large-scale designs Design for multiple formats Digital websocial media and print brochures, banners, etc.. - Collaborate with stakeholders to ensure designs align with the brand and project goals. - Make revisions and adjustments based on feedback. - Prepare print-ready files with accurate specifications. --- Required Skills - Proficiency in Adobe Creative Suite Photoshop, Illustrator, InDesign or equivalent tools. - Strong understanding of layout, typography, and color theory, - Experience in designing for both digital and print mediums. - Knowledge of print specifications and formats CMYK, DPI, bleed, etc.. - Ability to work independently and deliver within deadlines. --- Preferred Qualifications - Prior experience as a freelance designer or working in an agency setting. - Experience with branding projects - Strong portfolio showcasing past work. --- Compensation - 10,000 per month for a minimum of 30 imagesdesigns - Additional designs or complex projects may be compensated separately based on agreement. --- How to Apply Interested candidates should submit their portfolios and CVs this platform Please include samples of - Social media posts or marketing graphics - Print designs like brochures or banners - Any other relevant design work --- Additional Information - This is a remote freelance opportunity. - Payments will be made monthly upon submission and approval of deliverables. - Long-term collaboration opportunities available based on performance.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 语义表示:能够将句子和段落映射到384维的密集向量空间,便于进行语义分析。
- 多任务应用:可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等多种自然语言处理任务。
📦 安装指南
安装 Sentence Transformers 库:
pip install -U sentence-transformers
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | Sentence Transformer |
基础模型 | sentence-transformers/all-MiniLM-L6-v2 |
最大序列长度 | 256 个词元 |
输出维度 | 384 个词元 |
相似度函数 | 余弦相似度 |
模型来源
- 文档:Sentence Transformers Documentation
- 仓库:Sentence Transformers on GitHub
- Hugging Face:Sentence Transformers on Hugging Face
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
训练详情
训练数据集
未命名数据集
- 规模:16,682 个训练样本
- 列名:
sentence_0
、sentence_1
和label
- 基于前1000个样本的近似统计信息:
sentence_0 sentence_1 label 类型 字符串 字符串 浮点数 详情 - 最小值: 4 个词元
- 平均值: 160.64 个词元
- 最大值: 256 个词元
- 最小值: 8 个词元
- 平均值: 163.14 个词元
- 最大值: 256 个词元
- 最小值: 0.27
- 平均值: 0.72
- 最大值: 1.0
- 样本示例:
sentence_0 sentence_1 label Amazon eBay Tiktok Shop Amazon Services Amazon Seller Central Management A to Z Store Management A to Z Inventory Management Winning Product Sourcing Product Listing with SEO Listing With Variations Listing Optimization Title, Bullet Points & Description Optimization Images Optimization Product Launching FBA Shipment Creation more Amazon eBay Tiktok Shop Amazon Services Amazon Seller Central Management A to Z Store Management A to Z Inventory Management Winning Product Sourcing Product Listing with SEO Listing With Variations Listing Optimization Title , Bullet Point & Description Optimization Images Optimization Product Launching FBA Shipment Creation Sales Generation Dropshipping Store Design A+ Content Creation Amazon PPC Campaigns Brand Registry Trademark Registration Customer Services Management eBay Services eBay Store Management A to Z A to Z eBay Dropshipping Services Winning Products Sourcing Products listing with SEO Products listing With Variations Listings Optimization Title , Bullet Point & Description Optimization Images Optimization Keywords Optimization Sales Boost Products Ranking Hot selling product with 30 to 50 profit Competitor Analysis Orders Fulfillment Customer Services Management eBay Account Defect Removal Tax Exemption Management Setting Up Promotions Listing Templates Creation Tiktok Shop Services TikTok Shop Account Setup Product Listing Listing Optimization Keyword Research Product Hunting Competitor Analysis Campaign Management Influencer Collaboration TikTok Live Shopping Order Management Promotion Management TikTok Ads for Shop Content Creation for Shop Sales Analytics & Reporting Problem Solving & Issue Resolution Ongoing Shop Optimization
I'm seeking a skilled professional to assist with a variety of tasks including selling products from Amazon UAE to eBay UK via dropshipping, product sourcing, and full virtual assistance. Key Responsibilities - Product Searching & Listing Identify profitable products, create and optimize listings, and conduct market trend analysis. - SEO Management Oversee the search engine optimization for our listed products. - Selling & Listing Management List products on Amazon, eBay, and our website, while managing sales. Ideal Candidate - Previous dropshipping experience, particularly between Amazon and eBay, is a plus. - Strong skills in SEO, product sourcing, and virtual assistance. - Excellent understanding of market trends and product profitability. - Able to create and optimize product listings for maximum visibility and sales. This is a full-time position which requires dedication and a proactive approach. Please only apply if you have the necessary skills and experience.
0.7151671051979065
We are a group of young, energetic, creative & professional website developer, graphic designer and IT-Administrator who are devoted to implement your requirement with modern technology. Website Design - Development-Modification - Wordpress - Ecommerce - DynamicCustomized site Development Graphic Design - logo design - Brochure - Flyer - Leaflet - PDF Profile - Catalog - Greetings Card - PackageLabel Design - Business Card - Image RetouchEnhancementEditingManipulation IT-Admin Virtual Assistant - Product Listing - Site Content Management - Product Image Enhance - Data Processing - PDF conversion to WordExcel - Web Research - Data Scraping Why Choose Us o Quality Support for everyday 365 days even after project completion o We understand your requirements precisely to deliver Creative designs o 100 client satisfaction guaranteed
We are looking for a skilled and dedicated full-time web developer to join our team. The ideal candidate should have extensive experience working with WordPress, Divi, and Elementor, as well as the ability to create custom WordPress themes. Key Responsibilities Develop, maintain, and optimize WordPress websites. Customize and configure Divi and Elementor page builders to meet client needs. Create custom WordPress themes from scratch, ensuring they are optimized for performance and usability. Troubleshoot and resolve any website issues as they arise. Ensure websites are responsive and work seamlessly across all devices. Collaborate with our design and content teams to bring creative ideas to life. Stay up to date with the latest web development trends and best practices. Requirements Proven experience with WordPress, including custom theme development. Proficiency in Divi and Elementor page builders. Strong understanding of HTML, CSS, JavaScript, and PHP. Experience in responsive design and cross-browser compatibility. Ability to work independently and meet deadlines. Strong problem-solving skills and attention to detail. Excellent communication skills in English. Preferred Qualifications Experience with WooCommerce or other WordPress plugins. Familiarity with SEO best practices. Knowledge of version control systems like Git. If you are passionate about web development and want to be part of a growing team, we'd love to hear from you! Please submit your portfolio and CV for consideration.
0.7487468719482422
Hi there, I'm Priyanshu Agarwal I'm a Python expert with a diverse skillset that includes web scraping, Zoho and Tally Prime accounting, automation, and Python application building. With my strong foundation in Python, I can build and automate applications that meet your business needs, saving you time and resources. As a web scraping expert, I specialize in using Python, Selenium, BeautifulSoup4, and Python Requests to extract data from websites and web applications. I have experience in projects of varying scales, from small-scale data collection to large-scale data mining for enterprise-level clients. In addition to my technical expertise in web scraping, I have a strong background in accounting software such as Zoho and Tally Prime. I have experience in managing financial data, generating reports, and automating financial processes using these tools. I understand the importance of accurate and timely financial data in business decision-making, and I strive to ensure that my clients' financial data is organized, up-to-date, and easily accessible. With my experience in automation and Python application building, I can create custom solutions to
I'm in need of a data scraping expert to assist in gathering market research data from various retail websites. The ideal freelancer for this project should have a robust experience with Python and Java, as well as proficiency in Odoo and Airtable. Experience in building microservices would be a significant advantage. Key Responsibilities - Scraping data from designated retail websites for market research purposes - Organizing and managing the gathered data in Airtable - Potential development of microservices for data handling, 8n8 Skills and Experience Required - Extensive experience in data scraping, particularly from retail websites - Proficiency in Python and Java - Experience with Odoo and Airtable - Prior experience in building microservices - Understanding of market research techniques and requirements
0.747043251991272
- 损失函数:
CosineSimilarityLoss
,参数如下:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
训练超参数
非默认超参数
per_device_train_batch_size
:16per_device_eval_batch_size
:16num_train_epochs
:4multi_dataset_batch_sampler
:round_robin
所有超参数
点击展开
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:noprediction_loss_only
:Trueper_device_train_batch_size
:16per_device_eval_batch_size
:16per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:1eval_accumulation_steps
:Nonetorch_empty_cache_steps
:Nonelearning_rate
:5e-05weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1num_train_epochs
:4max_steps
:-1lr_scheduler_type
:linearlr_scheduler_kwargs
:{}warmup_ratio
:0.0warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Falsefp16
:Falsefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:0dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Falseignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torchoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Falsehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseeval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Nonedispatch_batches
:Nonesplit_batches
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseeval_on_start
:Falseuse_liger_kernel
:Falseeval_use_gather_object
:Falsebatch_sampler
:batch_samplermulti_dataset_batch_sampler
:round_robin
训练日志
轮次 | 步数 | 训练损失 |
---|---|---|
0.4794 | 500 | 0.001 |
0.9588 | 1000 | 0.0004 |
1.4382 | 1500 | 0.0003 |
1.9175 | 2000 | 0.0003 |
2.3969 | 2500 | 0.0003 |
2.8763 | 3000 | 0.0002 |
3.3557 | 3500 | 0.0002 |
3.8351 | 4000 | 0.0002 |
0.4794 | 500 | 0.0003 |
0.9588 | 1000 | 0.0003 |
1.4382 | 1500 | 0.0003 |
1.9175 | 2000 | 0.0003 |
2.3969 | 2500 | 0.0002 |
2.8763 | 3000 | 0.0002 |
3.3557 | 3500 | 0.0002 |
3.8351 | 4000 | 0.0002 |
0.4794 | 500 | 0.0002 |
0.9588 | 1000 | 0.0003 |
1.4382 | 1500 | 0.0003 |
1.9175 | 2000 | 0.0002 |
2.3969 | 2500 | 0.0002 |
2.8763 | 3000 | 0.0002 |
3.3557 | 3500 | 0.0002 |
3.8351 | 4000 | 0.0001 |
0.4794 | 500 | 0.0002 |
0.9588 | 1000 | 0.0002 |
1.4382 | 1500 | 0.0003 |
1.9175 | 2000 | 0.0002 |
2.3969 | 2500 | 0.0002 |
2.8763 | 3000 | 0.0002 |
3.3557 | 3500 | 0.0001 |
3.8351 | 4000 | 0.0001 |
0.4794 | 500 | 0.0002 |
0.9588 | 1000 | 0.0002 |
1.4382 | 1500 | 0.0002 |
1.9175 | 2000 | 0.0002 |
2.3969 | 2500 | 0.0002 |
2.8763 | 3000 | 0.0001 |
3.3557 | 3500 | 0.0001 |
3.8351 | 4000 | 0.0001 |
框架版本
- Python:3.12.6
- Sentence Transformers:3.2.0
- Transformers:4.45.2
- PyTorch:2.4.1+cpu
- Accelerate:1.0.1
- Datasets:3.0.1
- Tokenizers:0.20.1
📄 许可证
文档中未提及相关信息。
🔧 技术细节
本模型基于 Sentence Transformers 库,使用 sentence-transformers/all-MiniLM-L6-v2 作为基础模型进行微调。通过将句子和段落映射到384维的密集向量空间,利用余弦相似度计算语义文本相似度。在训练过程中,使用了未命名的数据集,包含16,682个训练样本,采用了 CosineSimilarityLoss
损失函数和特定的超参数设置。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98