Rhetoribert
该模型是基于nomic-ai/nomic-embed-text-v1.5在科学文献数据集上微调的句子转换器,专门用于分析学术文本的修辞功能,如总结结果、表达局限性等。
下载量 70
发布时间 : 1/24/2025
模型简介
将学术文本中的句子映射到768维向量空间,基于其修辞功能进行编码,适用于功能性文本相似度、局限性分析、修辞功能分类等任务。
模型特点
长文本处理能力
支持最大8192标记的序列长度,适合处理学术文献中的长段落
修辞功能编码
专门针对学术文本的修辞功能(如研究目的陈述、方法描述等)进行优化
多维度相似度
采用MatryoshkaLoss训练,支持从64到768维的多粒度相似度计算
高效检索
在科学文献检索任务上达到94.15%的nDCG@10指标
模型能力
学术文本嵌入生成
功能性文本相似度计算
科学文献检索
修辞功能分类
学术文本聚类分析
使用案例
学术研究
文献检索系统
基于修辞功能匹配相关研究文献
在测试集上达到90%的准确率@1
论文写作辅助
识别与当前写作内容修辞功能相似的参考句子
教育技术
学术写作评估
分析学生论文中各部分的修辞功能完整性
🚀 sentence-transformers/static-retrieval-mrl-en-v1
这是一个基于 sentence-transformers 的模型,它在 sci_gen_colbert_triplets 数据集上对 nomic-ai/nomic-embed-text-v1.5 进行了微调。该模型能够将学术文本中的句子映射到一个 768 维的密集向量空间,映射依据是句子的修辞功能(如总结结果、表达局限性等),可用于功能文本相似度分析、局限性分析、修辞功能分类、聚类等任务。
🚀 快速开始
直接使用(Sentence Transformers)
首先安装 Sentence Transformers 库:
pip install -U sentence-transformers
然后,你可以加载此模型并进行推理:
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("KaiserML/RhetoriBERT")
# 进行推理
sentences = [
'Surveys and interviews: Introducing excerpts from interview data',
"Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 能够将学术文本中的句子映射到 768 维的密集向量空间,依据是句子的修辞功能。
- 可用于功能文本相似度分析、局限性分析、修辞功能分类、聚类等多种任务。
📦 安装指南
安装 Sentence Transformers 库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("KaiserML/RhetoriBERT")
# 进行推理
sentences = [
'Surveys and interviews: Introducing excerpts from interview data',
"Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | Sentence Transformer |
基础模型 | nomic-ai/nomic-embed-text-v1.5 |
最大序列长度 | 8192 个词元 |
输出维度 | 768 维 |
相似度函数 | 余弦相似度 |
训练数据集 | sci_gen_colbert_triplets |
语言 | en |
许可证 | apache-2.0 |
模型来源
- 文档:Sentence Transformers 文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
评估
指标
信息检索
- 数据集:
SciGen-Eval-Set
- 使用
InformationRetrievalEvaluator
进行评估
指标 | 值 |
---|---|
cosine_accuracy@1 | 0.9 |
cosine_accuracy@3 | 0.9452 |
cosine_accuracy@5 | 0.9642 |
cosine_accuracy@10 | 0.9853 |
cosine_precision@1 | 0.9 |
cosine_precision@3 | 0.3151 |
cosine_precision@5 | 0.1928 |
cosine_precision@10 | 0.0985 |
cosine_recall@1 | 0.9 |
cosine_recall@3 | 0.9452 |
cosine_recall@5 | 0.9642 |
cosine_recall@10 | 0.9853 |
cosine_ndcg@10 | 0.9415 |
cosine_mrr@10 | 0.9276 |
cosine_map@100 | 0.9284 |
训练详情
训练数据集
sci_gen_colbert_triplets
- 数据集:sci_gen_colbert_triplets,版本为 44071bd
- 大小:35,934 个训练样本
- 列:
query
、positive
和negative
- 基于前 1000 个样本的近似统计信息:
| | query | positive | negative |
|------|------|------|------|
| 类型 | string | string | string |
| 详情 |
- 最小:5 个词元
- 平均:10.24 个词元
- 最大:23 个词元
- 最小:2 个词元
- 平均:39.86 个词元
- 最大:80 个词元
- 最小:18 个词元
- 平均:40.41 个词元
- 最大:88 个词元
- 样本:
| query | positive | negative |
|------|------|------|
|
Previous research: highlighting negative outcomes
|Despite the widespread use of seniority-based wage systems in labor contracts, previous research has highlighted their negative outcomes, such as inefficiencies and demotivating effects on workers.
|This paper, published in 1974, was among the first to establish the importance of rank-order tournaments as optimal labor contracts in microeconomics.
| |Synthesising sources: contrasting evidence or ideas
|Despite the observed chronic enterocolitis in Interleukin-10-deficient mice, some studies suggest that this cytokine plays a protective role in intestinal inflammation in humans (Kurimoto et al., 2001).
|Chronic enterocolitis developed in Interleukin-10-deficient mice, characterized by inflammatory cell infiltration, epithelial damage, and increased production of pro-inflammatory cytokines.
| |Previous research: Approaches taken
|Previous research on measuring patient-relevant outcomes in osteoarthritis has primarily relied on self-reported measures, such as the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 1988).
|The WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaire has been widely used in physical therapy research to assess the impact of antirheumatic drug therapy on patient-reported outcomes in individuals with hip or knee osteoarthritis.
| - 损失函数:
MatryoshkaLoss
,参数如下:
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
评估数据集
sci_gen_colbert_triplets
- 数据集:sci_gen_colbert_triplets,版本为 44071bd
- 大小:4,492 个评估样本
- 列:
query
、positive
和negative
- 基于前 1000 个样本的近似统计信息:
| | query | positive | negative |
|------|------|------|------|
| 类型 | string | string | string |
| 详情 |
- 最小:5 个词元
- 平均:10.23 个词元
- 最大:23 个词元
- 最小:18 个词元
- 平均:39.83 个词元
- 最大:84 个词元
- 最小:8 个词元
- 平均:39.89 个词元
- 最大:84 个词元
- 样本:
| query | positive | negative |
|------|------|------|
|
Providing background information: reference to the purpose of the study
|This study aimed to investigate the impact of socioeconomic status on child development, specifically focusing on cognitive, language, and social-emotional domains.
|Children from high socioeconomic status families showed significantly higher IQ scores (M = 112.5, SD = 5.6) compared to children from low socioeconomic status families (M = 104.3, SD = 6.2) in the verbal IQ subtest.
| |Providing background information: reference to the literature
|According to previous studies using WinGX suite for small-molecule single-crystal crystallography, the optimization of crystal structures leads to improved accuracy in determining atomic coordinates.
|This paper describes the WinGX suite, a powerful tool for small-molecule single-crystal crystallography that significantly advances the field of crystallography by streamlining data collection and analysis.
| |General comments on the relevant literature
|Polymer brushes have gained significant attention in the field of polymer science due to their unique properties, such as controlled thickness, high surface density, and tunable interfacial properties.
|Despite previous reports suggesting that polymer brushes with short grafting densities exhibit poorer performance in terms of adhesion and stability compared to those with higher grafting densities (Liu et al., 2010), our results indicate that the opposite is true for certain types of polymer brushes.
| - 损失函数:
MatryoshkaLoss
,参数如下:
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
训练超参数
非默认超参数
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
训练日志
轮次 | 步骤 | 训练损失 | 验证损失 | SciGen-Eval-Set_cosine_ndcg@10 |
---|---|---|---|---|
0 | 0 | - | - | 0.1744 |
0.1418 | 20 | 31.1056 | 29.9614 | 0.2010 |
0.2837 | 40 | 28.3636 | 25.9021 | 0.3552 |
0.4255 | 60 | 23.8421 | 21.4941 | 0.4817 |
0.5674 | 80 | 20.2484 | 19.1669 | 0.5793 |
0.7092 | 100 | 18.6804 | 18.0565 | 0.6219 |
0.8511 | 120 | 17.7705 | 17.3231 | 0.6564 |
0.9929 | 140 | 17.1951 | 16.8645 | 0.6723 |
1.1348 | 160 | 16.1046 | 16.3714 | 0.6918 |
1.2766 | 180 | 16.0491 | 16.0427 | 0.7063 |
1.4184 | 200 | 15.4859 | 15.6624 | 0.7240 |
1.5603 | 220 | 15.3239 | 15.4609 | 0.7341 |
1.7021 | 240 | 14.9202 | 15.1556 | 0.7414 |
1.8440 | 260 | 14.7176 | 14.8438 | 0.7584 |
1.9858 | 280 | 14.5036 | 14.5248 | 0.7718 |
2.1277 | 300 | 12.8219 | 14.4285 | 0.7860 |
2.2695 | 320 | 12.9107 | 14.1397 | 0.7927 |
2.4113 | 340 | 12.6728 | 13.8471 | 0.8092 |
2.5532 | 360 | 12.4097 | 13.6623 | 0.8160 |
2.6950 | 380 | 12.3039 | 13.4078 | 0.8264 |
2.8369 | 400 | 12.121 | 13.1426 | 0.8382 |
2.9787 | 420 | 12.0307 | 12.7989 | 0.8520 |
3.1206 | 440 | 10.4306 | 12.7893 | 0.8566 |
3.2624 | 460 | 10.5238 | 12.7036 | 0.8681 |
3.4043 | 480 | 10.3648 | 12.5674 | 0.8783 |
3.5461 | 500 | 10.4774 | 12.3069 | 0.8794 |
3.6879 | 520 | 10.4965 | 12.0965 | 0.8837 |
3.8298 | 540 | 10.4085 | 12.0368 | 0.8868 |
3.9716 | 560 | 10.2881 | 11.9063 | 0.8946 |
4.1135 | 580 | 9.1967 | 11.9930 | 0.8970 |
4.2553 | 600 | 9.3798 | 11.8936 | 0.9047 |
4.3972 | 620 | 9.3375 | 11.7678 | 0.9118 |
4.5390 | 640 | 9.2483 | 11.7572 | 0.9078 |
4.6809 | 660 | 9.3736 | 11.6011 | 0.9174 |
4.8227 | 680 | 9.3427 | 11.5383 | 0.9197 |
4.9645 | 700 | 9.3935 | 11.4293 | 0.9242 |
5.1064 | 720 | 8.5631 | 11.5119 | 0.9294 |
5.2482 | 740 | 8.6057 | 11.5173 | 0.9255 |
5.3901 | 760 | 8.6059 | 11.5421 | 0.9263 |
5.5319 | 780 | 8.8488 | 11.3879 | 0.9304 |
5.6738 | 800 | 8.7855 | 11.3523 | 0.9320 |
5.8156 | 820 | 8.7525 | 11.2572 | 0.9331 |
5.9574 | 840 | 8.8674 | 11.1829 | 0.9329 |
6.0993 | 860 | 8.0564 | 11.3401 | 0.9367 |
6.2411 | 880 | 8.1608 | 11.3323 | 0.9370 |
6.3830 | 900 | 8.2702 | 11.3146 | 0.9370 |
6.5248 | 920 | 8.3711 | 11.2561 | 0.9372 |
6.6667 | 940 | 8.421 | 11.2558 | 0.9354 |
6.8085 | 960 | 8.4125 | 11.1738 | 0.9384 |
6.9504 | 980 | 8.42 | 11.0996 | 0.9415 |
框架版本
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
📄 许可证
本项目采用 apache-2.0 许可证。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98