Rhetoribert
該模型是基於nomic-ai/nomic-embed-text-v1.5在科學文獻數據集上微調的句子轉換器,專門用於分析學術文本的修辭功能,如總結結果、表達侷限性等。
下載量 70
發布時間 : 1/24/2025
模型概述
將學術文本中的句子映射到768維向量空間,基於其修辭功能進行編碼,適用於功能性文本相似度、侷限性分析、修辭功能分類等任務。
模型特點
長文本處理能力
支持最大8192標記的序列長度,適合處理學術文獻中的長段落
修辭功能編碼
專門針對學術文本的修辭功能(如研究目的陳述、方法描述等)進行優化
多維度相似度
採用MatryoshkaLoss訓練,支持從64到768維的多粒度相似度計算
高效檢索
在科學文獻檢索任務上達到94.15%的nDCG@10指標
模型能力
學術文本嵌入生成
功能性文本相似度計算
科學文獻檢索
修辭功能分類
學術文本聚類分析
使用案例
學術研究
文獻檢索系統
基於修辭功能匹配相關研究文獻
在測試集上達到90%的準確率@1
論文寫作輔助
識別與當前寫作內容修辭功能相似的參考句子
教育技術
學術寫作評估
分析學生論文中各部分的修辭功能完整性
🚀 sentence-transformers/static-retrieval-mrl-en-v1
這是一個基於 sentence-transformers 的模型,它在 sci_gen_colbert_triplets 數據集上對 nomic-ai/nomic-embed-text-v1.5 進行了微調。該模型能夠將學術文本中的句子映射到一個 768 維的密集向量空間,映射依據是句子的修辭功能(如總結結果、表達侷限性等),可用於功能文本相似度分析、侷限性分析、修辭功能分類、聚類等任務。
🚀 快速開始
直接使用(Sentence Transformers)
首先安裝 Sentence Transformers 庫:
pip install -U sentence-transformers
然後,你可以加載此模型並進行推理:
from sentence_transformers import SentenceTransformer
# 從 🤗 Hub 下載模型
model = SentenceTransformer("KaiserML/RhetoriBERT")
# 進行推理
sentences = [
'Surveys and interviews: Introducing excerpts from interview data',
"Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 能夠將學術文本中的句子映射到 768 維的密集向量空間,依據是句子的修辭功能。
- 可用於功能文本相似度分析、侷限性分析、修辭功能分類、聚類等多種任務。
📦 安裝指南
安裝 Sentence Transformers 庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
# 從 🤗 Hub 下載模型
model = SentenceTransformer("KaiserML/RhetoriBERT")
# 進行推理
sentences = [
'Surveys and interviews: Introducing excerpts from interview data',
"Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | Sentence Transformer |
基礎模型 | nomic-ai/nomic-embed-text-v1.5 |
最大序列長度 | 8192 個詞元 |
輸出維度 | 768 維 |
相似度函數 | 餘弦相似度 |
訓練數據集 | sci_gen_colbert_triplets |
語言 | en |
許可證 | apache-2.0 |
模型來源
- 文檔:Sentence Transformers 文檔
- 倉庫:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
評估
指標
信息檢索
- 數據集:
SciGen-Eval-Set
- 使用
InformationRetrievalEvaluator
進行評估
指標 | 值 |
---|---|
cosine_accuracy@1 | 0.9 |
cosine_accuracy@3 | 0.9452 |
cosine_accuracy@5 | 0.9642 |
cosine_accuracy@10 | 0.9853 |
cosine_precision@1 | 0.9 |
cosine_precision@3 | 0.3151 |
cosine_precision@5 | 0.1928 |
cosine_precision@10 | 0.0985 |
cosine_recall@1 | 0.9 |
cosine_recall@3 | 0.9452 |
cosine_recall@5 | 0.9642 |
cosine_recall@10 | 0.9853 |
cosine_ndcg@10 | 0.9415 |
cosine_mrr@10 | 0.9276 |
cosine_map@100 | 0.9284 |
訓練詳情
訓練數據集
sci_gen_colbert_triplets
- 數據集:sci_gen_colbert_triplets,版本為 44071bd
- 大小:35,934 個訓練樣本
- 列:
query
、positive
和negative
- 基於前 1000 個樣本的近似統計信息:
| | query | positive | negative |
|------|------|------|------|
| 類型 | string | string | string |
| 詳情 |
- 最小:5 個詞元
- 平均:10.24 個詞元
- 最大:23 個詞元
- 最小:2 個詞元
- 平均:39.86 個詞元
- 最大:80 個詞元
- 最小:18 個詞元
- 平均:40.41 個詞元
- 最大:88 個詞元
- 樣本:
| query | positive | negative |
|------|------|------|
|
Previous research: highlighting negative outcomes
|Despite the widespread use of seniority-based wage systems in labor contracts, previous research has highlighted their negative outcomes, such as inefficiencies and demotivating effects on workers.
|This paper, published in 1974, was among the first to establish the importance of rank-order tournaments as optimal labor contracts in microeconomics.
| |Synthesising sources: contrasting evidence or ideas
|Despite the observed chronic enterocolitis in Interleukin-10-deficient mice, some studies suggest that this cytokine plays a protective role in intestinal inflammation in humans (Kurimoto et al., 2001).
|Chronic enterocolitis developed in Interleukin-10-deficient mice, characterized by inflammatory cell infiltration, epithelial damage, and increased production of pro-inflammatory cytokines.
| |Previous research: Approaches taken
|Previous research on measuring patient-relevant outcomes in osteoarthritis has primarily relied on self-reported measures, such as the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 1988).
|The WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaire has been widely used in physical therapy research to assess the impact of antirheumatic drug therapy on patient-reported outcomes in individuals with hip or knee osteoarthritis.
| - 損失函數:
MatryoshkaLoss
,參數如下:
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
評估數據集
sci_gen_colbert_triplets
- 數據集:sci_gen_colbert_triplets,版本為 44071bd
- 大小:4,492 個評估樣本
- 列:
query
、positive
和negative
- 基於前 1000 個樣本的近似統計信息:
| | query | positive | negative |
|------|------|------|------|
| 類型 | string | string | string |
| 詳情 |
- 最小:5 個詞元
- 平均:10.23 個詞元
- 最大:23 個詞元
- 最小:18 個詞元
- 平均:39.83 個詞元
- 最大:84 個詞元
- 最小:8 個詞元
- 平均:39.89 個詞元
- 最大:84 個詞元
- 樣本:
| query | positive | negative |
|------|------|------|
|
Providing background information: reference to the purpose of the study
|This study aimed to investigate the impact of socioeconomic status on child development, specifically focusing on cognitive, language, and social-emotional domains.
|Children from high socioeconomic status families showed significantly higher IQ scores (M = 112.5, SD = 5.6) compared to children from low socioeconomic status families (M = 104.3, SD = 6.2) in the verbal IQ subtest.
| |Providing background information: reference to the literature
|According to previous studies using WinGX suite for small-molecule single-crystal crystallography, the optimization of crystal structures leads to improved accuracy in determining atomic coordinates.
|This paper describes the WinGX suite, a powerful tool for small-molecule single-crystal crystallography that significantly advances the field of crystallography by streamlining data collection and analysis.
| |General comments on the relevant literature
|Polymer brushes have gained significant attention in the field of polymer science due to their unique properties, such as controlled thickness, high surface density, and tunable interfacial properties.
|Despite previous reports suggesting that polymer brushes with short grafting densities exhibit poorer performance in terms of adhesion and stability compared to those with higher grafting densities (Liu et al., 2010), our results indicate that the opposite is true for certain types of polymer brushes.
| - 損失函數:
MatryoshkaLoss
,參數如下:
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
訓練超參數
非默認超參數
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
所有超參數
點擊展開
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
訓練日誌
輪次 | 步驟 | 訓練損失 | 驗證損失 | SciGen-Eval-Set_cosine_ndcg@10 |
---|---|---|---|---|
0 | 0 | - | - | 0.1744 |
0.1418 | 20 | 31.1056 | 29.9614 | 0.2010 |
0.2837 | 40 | 28.3636 | 25.9021 | 0.3552 |
0.4255 | 60 | 23.8421 | 21.4941 | 0.4817 |
0.5674 | 80 | 20.2484 | 19.1669 | 0.5793 |
0.7092 | 100 | 18.6804 | 18.0565 | 0.6219 |
0.8511 | 120 | 17.7705 | 17.3231 | 0.6564 |
0.9929 | 140 | 17.1951 | 16.8645 | 0.6723 |
1.1348 | 160 | 16.1046 | 16.3714 | 0.6918 |
1.2766 | 180 | 16.0491 | 16.0427 | 0.7063 |
1.4184 | 200 | 15.4859 | 15.6624 | 0.7240 |
1.5603 | 220 | 15.3239 | 15.4609 | 0.7341 |
1.7021 | 240 | 14.9202 | 15.1556 | 0.7414 |
1.8440 | 260 | 14.7176 | 14.8438 | 0.7584 |
1.9858 | 280 | 14.5036 | 14.5248 | 0.7718 |
2.1277 | 300 | 12.8219 | 14.4285 | 0.7860 |
2.2695 | 320 | 12.9107 | 14.1397 | 0.7927 |
2.4113 | 340 | 12.6728 | 13.8471 | 0.8092 |
2.5532 | 360 | 12.4097 | 13.6623 | 0.8160 |
2.6950 | 380 | 12.3039 | 13.4078 | 0.8264 |
2.8369 | 400 | 12.121 | 13.1426 | 0.8382 |
2.9787 | 420 | 12.0307 | 12.7989 | 0.8520 |
3.1206 | 440 | 10.4306 | 12.7893 | 0.8566 |
3.2624 | 460 | 10.5238 | 12.7036 | 0.8681 |
3.4043 | 480 | 10.3648 | 12.5674 | 0.8783 |
3.5461 | 500 | 10.4774 | 12.3069 | 0.8794 |
3.6879 | 520 | 10.4965 | 12.0965 | 0.8837 |
3.8298 | 540 | 10.4085 | 12.0368 | 0.8868 |
3.9716 | 560 | 10.2881 | 11.9063 | 0.8946 |
4.1135 | 580 | 9.1967 | 11.9930 | 0.8970 |
4.2553 | 600 | 9.3798 | 11.8936 | 0.9047 |
4.3972 | 620 | 9.3375 | 11.7678 | 0.9118 |
4.5390 | 640 | 9.2483 | 11.7572 | 0.9078 |
4.6809 | 660 | 9.3736 | 11.6011 | 0.9174 |
4.8227 | 680 | 9.3427 | 11.5383 | 0.9197 |
4.9645 | 700 | 9.3935 | 11.4293 | 0.9242 |
5.1064 | 720 | 8.5631 | 11.5119 | 0.9294 |
5.2482 | 740 | 8.6057 | 11.5173 | 0.9255 |
5.3901 | 760 | 8.6059 | 11.5421 | 0.9263 |
5.5319 | 780 | 8.8488 | 11.3879 | 0.9304 |
5.6738 | 800 | 8.7855 | 11.3523 | 0.9320 |
5.8156 | 820 | 8.7525 | 11.2572 | 0.9331 |
5.9574 | 840 | 8.8674 | 11.1829 | 0.9329 |
6.0993 | 860 | 8.0564 | 11.3401 | 0.9367 |
6.2411 | 880 | 8.1608 | 11.3323 | 0.9370 |
6.3830 | 900 | 8.2702 | 11.3146 | 0.9370 |
6.5248 | 920 | 8.3711 | 11.2561 | 0.9372 |
6.6667 | 940 | 8.421 | 11.2558 | 0.9354 |
6.8085 | 960 | 8.4125 | 11.1738 | 0.9384 |
6.9504 | 980 | 8.42 | 11.0996 | 0.9415 |
框架版本
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
📄 許可證
本項目採用 apache-2.0 許可證。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98