🚀 DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2
本模型是 sentence-transformers 模型库中 此模型仓库 在特定提交版本 d66eff4d8a8598f264f166af8db67f7797164651
下的副本。它可以将句子和段落映射到384维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
本模型可通过 sentence-transformers
库或 HuggingFace Transformers
库使用。下面将分别介绍两种使用方式。
✨ 主要特性
- 多语言支持:能够处理多种语言的句子和段落。
- 向量映射:将文本映射到384维的密集向量空间。
- 应用广泛:可用于聚类、语义搜索等多种自然语言处理任务。
📦 安装指南
若要使用 sentence-transformers
库,可通过以下命令进行安装:
pip install -U sentence-transformers
💻 使用示例
基础用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(HuggingFace Transformers)
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
若要对本模型进行自动化评估,可参考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
🔧 技术细节
本模型基于 sentence-transformers
框架构建,使用 BertModel
作为基础的Transformer模型,并采用了平均池化(Mean Pooling)操作来获取句子的嵌入表示。
📄 许可证
本模型采用 Apache-2.0 许可证。
📖 引用与作者
本模型由 sentence-transformers 团队训练。
若您觉得本模型有帮助,可引用以下论文:Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}