🚀 DeCLUTR-sci-base
DeCLUTR-sci-base是一个用于句子相似度计算的模型,它基于科学文献进行预训练,能够为科学文本提供高质量的句子嵌入表示,可广泛应用于科学文本的语义相似度计算等任务。
🚀 快速开始
模型描述
这是基于 allenai/scibert_scivocab_uncased 的模型,使用 DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations 中提出的自监督训练策略,在来自 S2ORC 的超过200万篇科学论文上进行了扩展预训练。
预期用途和限制
该模型旨在用作句子编码器,类似于 Google的通用句子编码器 或 Sentence Transformers,尤其适用于科学文本。
如何使用
完整详情请参阅 我们的仓库,以下是简单示例。
💻 使用示例
基础用法
from scipy.spatial.distance import cosine
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("johngiorgi/declutr-sci-base")
text = [
"Oncogenic KRAS mutations are common in cancer.",
"Notably, c-Raf has recently been found essential for development of K-Ras-driven NSCLCs.",
]
embeddings = model.encode(texts)
semantic_sim = 1 - cosine(embeddings[0], embeddings[1])
使用 🤗 Transformers
import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-sci-base")
model = AutoModel.from_pretrained("johngiorgi/declutr-sci-base")
text = [
"Oncogenic KRAS mutations are common in cancer.",
"Notably, c-Raf has recently been found essential for development of K-Ras-driven NSCLCs.",
]
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
sequence_output = model(**inputs)[0]
embeddings = torch.sum(
sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1
) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9)
semantic_sim = 1 - cosine(embeddings[0], embeddings[1])
BibTeX引用和引用信息
@inproceedings{giorgi-etal-2021-declutr,
title = {{D}e{CLUTR}: Deep Contrastive Learning for Unsupervised Textual Representations},
author = {Giorgi, John and Nitski, Osvald and Wang, Bo and Bader, Gary},
year = 2021,
month = aug,
booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Online},
pages = {879--895},
doi = {10.18653/v1/2021.acl-long.72},
url = {https://aclanthology.org/2021.acl-long.72}
}
📄 许可证
本项目采用 Apache-2.0 许可证。
属性 |
详情 |
模型类型 |
句子相似度模型 |
训练数据 |
S2ORC 中的超过200万篇科学论文 |