🚀 Wav2Vec2-Large-XLSR-Upper-Sorbian
本项目是在Upper Sorbian Common Voice数据集上对 facebook/wav2vec2-large-xlsr-53 进行微调得到的模型,此外还加入了来自在线 Sorbian课程 的28分钟额外音频。
使用此模型时,请确保输入的语音采样率为16kHz。
🚀 快速开始
本模型是在Upper Sorbian Common Voice数据集上对预训练模型进行微调得到的,可用于上索布语的语音识别任务。使用时需注意语音输入的采样率。
✨ 主要特性
📦 安装指南
文档未提及具体安装步骤,故跳过此章节。
💻 使用示例
基础用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hsb", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高级用法
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ga-IE", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed")
model.to("cuda")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�„«»–]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = remove_special_characters(batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
📚 详细文档
测试结果
测试结果:48.2 %
训练信息
- 训练数据:使用了Common Voice的
train
和 validation
数据集,并结合了在线 Sorbian课程 中英语A1课程的词汇。
- 训练脚本:可在 此处 找到。
- 数据清理脚本:用于清理词汇数据转录的脚本在 此处。
📄 许可证
本项目采用 apache-2.0
许可证。
模型信息表格
属性 |
详情 |
模型类型 |
微调后的Wav2Vec2-Large-XLSR模型 |
训练数据 |
Common Voice的 train 和 validation 数据集,以及在线Sorbian课程的额外音频和词汇 |
许可证 |
apache-2.0 |