🚀 Wav2Vec2-Large-XLSR-Upper-Sorbian
本項目是在Upper Sorbian Common Voice數據集上對 facebook/wav2vec2-large-xlsr-53 進行微調得到的模型,此外還加入了來自在線 Sorbian課程 的28分鐘額外音頻。
使用此模型時,請確保輸入的語音採樣率為16kHz。
🚀 快速開始
本模型是在Upper Sorbian Common Voice數據集上對預訓練模型進行微調得到的,可用於上索布語的語音識別任務。使用時需注意語音輸入的採樣率。
✨ 主要特性
📦 安裝指南
文檔未提及具體安裝步驟,故跳過此章節。
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hsb", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高級用法
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ga-IE", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-upper-sorbian-mixed")
model.to("cuda")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�„«»–]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = remove_special_characters(batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
📚 詳細文檔
測試結果
測試結果:48.2 %
訓練信息
- 訓練數據:使用了Common Voice的
train
和 validation
數據集,並結合了在線 Sorbian課程 中英語A1課程的詞彙。
- 訓練腳本:可在 此處 找到。
- 數據清理腳本:用於清理詞彙數據轉錄的腳本在 此處。
📄 許可證
本項目採用 apache-2.0
許可證。
模型信息表格
屬性 |
詳情 |
模型類型 |
微調後的Wav2Vec2-Large-XLSR模型 |
訓練數據 |
Common Voice的 train 和 validation 數據集,以及在線Sorbian課程的額外音頻和詞彙 |
許可證 |
apache-2.0 |