🚀 Wav2Vec2-Large-XLSR-53-芬兰语模型
本项目基于 Common Voice 和 CSS10 芬兰语:单说话人语音数据集,对 facebook/wav2vec2-large-xlsr-53 模型进行了芬兰语微调。使用该模型时,请确保语音输入的采样率为 16kHz。
🚀 快速开始
本模型可直接使用(无需语言模型),以下是使用示例。
💻 使用示例
基础用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "el", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("预测结果:", processor.batch_decode(predicted_ids))
print("参考结果:", test_dataset["sentence"][:2])
高级用法
以下是在 Common Voice 芬兰语测试数据上评估模型的代码示例。
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "fi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish")
model.to("cuda")
chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']"
replacements = {"…": "", "–": ''}
resampler = {
48_000: torchaudio.transforms.Resample(48_000, 16_000),
44100: torchaudio.transforms.Resample(44100, 16_000),
32000: torchaudio.transforms.Resample(32000, 16_000)
}
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
for key, value in replacements.items():
batch["sentence"] = batch["sentence"].replace(key, value)
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("字错率 (WER): {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("字符错误率 (CER): {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]])))
测试结果:38.335242 %
🔧 技术细节
训练数据
训练使用了 Common Voice 训练数据集,同时使用了 CSS10 芬兰语
的所有归一化转录数据。
训练过程
模型在经过 20000 步训练后,使用 Common Voice 的训练集和验证集进行了额外 2000 步的微调。
📄 许可证
本项目采用 Apache-2.0 许可证。
信息表格
属性 |
详情 |
模型类型 |
V XLSR Wav2Vec2 Large 53 - 芬兰语 |
训练数据 |
Common Voice、CSS10 芬兰语:单说话人语音数据集 |
评估指标 |
字错率 (WER)、字符错误率 (CER) |