🚀 aiky-sentence-bertino模型
aiky-sentence-bertino是一个基于sentence-transformers的模型,它可以将句子和段落映射到768维的密集向量空间,可用于聚类、语义搜索等任务。
🚀 快速开始
📦 安装指南
若要使用此模型,需要安装sentence-transformers,可以使用以下命令进行安装:
pip install -U sentence-transformers
💻 使用示例
基础用法
使用sentence-transformers
库调用该模型的示例代码如下:
from sentence_transformers import SentenceTransformer
sentences = ["Questa è una frase di esempio", "Ogni frase viene convertita"]
model = SentenceTransformer('aiknowyou/aiky-sentence-bertino')
embeddings = model.encode(sentences)
print(embeddings)
高级用法
若不使用sentence-transformers
库,也可以直接使用transformers
库调用该模型。需要先将输入数据通过Transformer模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('aiknowyou/aiky-sentence-bertino')
model = AutoModel.from_pretrained('aiknowyou/aiky-sentence-bertino')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
若要对该模型进行自动评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
训练细节
该模型的训练参数如下:
数据加载器
使用torch.utils.data.dataloader.DataLoader
,长度为391,参数如下:
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数
使用sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss
损失函数。
训练方法参数
fit()
方法的参数如下:
{
"epochs": 20,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 许可证
本作品采用知识共享署名 - 非商业性使用 - 相同方式共享 4.0 国际许可协议进行许可。
