🚀 kpf-sbert-128d-v1
kpf-sbert-128d-v1 模型将 kpf bert 模型的输出维度降至 128 维,并经过 nli(3)+sts(10)+nli(3)+sts(10) 的训练。它是一个 sentence-transformers 模型,可将句子和段落映射到 128 维的密集向量空间,适用于聚类或语义搜索等任务。
🚀 快速开始
若你已安装 sentence-transformers,使用此模型将十分便捷。
pip install -U sentence-transformers
随后,你可以按如下方式使用该模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('bongsoo/kpf-sbert-128d-v1')
embeddings = model.encode(sentences)
print(embeddings)
✨ 主要特性
- 可将句子和段落映射到 128 维的密集向量空间。
- 适用于聚类或语义搜索等任务。
📚 详细文档
评估结果
若要对该模型进行自动化评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
训练
该模型使用以下参数进行训练:
数据加载器:
torch.utils.data.dataloader.DataLoader
,长度为 326,参数如下:
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()
方法的参数:
{
"epochs": 10,
"evaluation_steps": 651,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 0.0001
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 326,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
引用与作者
作者:bongsoo