20220413 210552
2
20220413 210552
由 lilitket 开发
该模型是基于facebook/wav2vec2-xls-r-300m在common_voice数据集上微调的语音识别模型
下载量 18
发布时间 : 4/13/2022
模型简介
这是一个用于语音识别的微调模型,基于wav2vec2-xls-r-300m架构,在common_voice数据集上训练。
模型特点
高效微调
基于强大的wav2vec2-xls-r-300m基础模型进行微调
低词错误率
在评估集上取得1.0006的词错误率(WER)
优化训练
采用线性学习率调度和2000步预热训练
模型能力
语音转文本
自动语音识别
使用案例
语音转录
语音转文字
将语音内容转换为文字记录
词错误率1.0006
🚀 20220413 - 210552
该模型是 facebook/wav2vec2 - xls - r - 300m 在 common_voice 数据集上的微调版本。它在评估集上取得了以下结果:
- 损失:3.0348
- 字错率(Wer):1.0006
🚀 快速开始
此模型是语音处理领域的一个重要成果,基于预训练模型 facebook/wav2vec2-xls-r-300m
在 common_voice
数据集上进行微调。可用于语音识别等相关任务,为语音处理提供了一个强大的工具。
🔧 技术细节
训练超参数
训练过程中使用了以下超参数:
- 学习率(learning_rate):6e - 06
- 训练批次大小(train_batch_size):1
- 评估批次大小(eval_batch_size):8
- 随机种子(seed):42
- 优化器(optimizer):Adam,β1 = 0.9,β2 = 0.999,ε = 1e - 08
- 学习率调度器类型(lr_scheduler_type):线性
- 学习率调度器预热步数(lr_scheduler_warmup_steps):2000
- 训练轮数(num_epochs):1200
- 混合精度训练(mixed_precision_training):原生自动混合精度(Native AMP)
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | 字错率(Wer) |
---|---|---|---|---|
17.1111 | 1.5 | 200 | 16.6792 | 1.0 |
16.0992 | 3.01 | 400 | 15.3947 | 1.0 |
10.7668 | 4.51 | 600 | 10.3625 | 1.0 |
6.2652 | 6.02 | 800 | 7.6849 | 1.0 |
5.1417 | 7.52 | 1000 | 6.0307 | 1.0 |
4.6159 | 9.02 | 1200 | 5.0891 | 1.0 |
4.2444 | 10.53 | 1400 | 4.4120 | 1.0 |
3.8935 | 12.03 | 1600 | 3.9570 | 1.0 |
3.6292 | 13.53 | 1800 | 3.6405 | 1.0 |
3.4535 | 15.04 | 2000 | 3.4523 | 1.0 |
3.3175 | 16.54 | 2200 | 3.3589 | 1.0 |
3.2266 | 18.05 | 2400 | 3.2966 | 1.0 |
3.1825 | 19.55 | 2600 | 3.2658 | 1.0 |
3.1604 | 21.05 | 2800 | 3.2534 | 1.0 |
3.1438 | 22.56 | 3000 | 3.2437 | 1.0 |
3.1176 | 24.06 | 3200 | 3.2169 | 1.0 |
3.1088 | 25.56 | 3400 | 3.2102 | 1.0 |
3.0955 | 27.07 | 3600 | 3.1983 | 1.0 |
3.0763 | 28.57 | 3800 | 3.2092 | 1.0 |
3.0599 | 30.08 | 4000 | 3.2092 | 1.0 |
3.0385 | 31.58 | 4200 | 3.2154 | 1.0 |
2.9996 | 33.08 | 4400 | 3.2120 | 1.0 |
2.9207 | 34.59 | 4600 | 3.2146 | 1.0 |
2.8071 | 36.09 | 4800 | 3.2093 | 1.0 |
2.6412 | 37.59 | 5000 | 3.2282 | 1.0 |
2.4594 | 39.1 | 5200 | 3.2442 | 1.0 |
2.2708 | 40.6 | 5400 | 3.2944 | 1.0 |
2.1279 | 42.11 | 5600 | 3.3260 | 1.0 |
1.9985 | 43.61 | 5800 | 3.3586 | 1.0 |
1.8979 | 45.11 | 6000 | 3.3945 | 1.0 |
1.7838 | 46.62 | 6200 | 3.4761 | 1.0 |
1.6774 | 48.12 | 6400 | 3.4886 | 1.0 |
1.5958 | 49.62 | 6600 | 3.6208 | 1.0 |
1.4957 | 51.13 | 6800 | 3.6501 | 1.0 |
1.4202 | 52.63 | 7000 | 3.6492 | 1.0 |
1.3377 | 54.14 | 7200 | 3.7392 | 1.0 |
1.2872 | 55.64 | 7400 | 3.8624 | 1.0 |
1.1992 | 57.14 | 7600 | 3.8511 | 1.0 |
1.1238 | 58.65 | 7800 | 3.9662 | 1.0 |
1.0775 | 60.15 | 8000 | 3.9267 | 1.0 |
1.011 | 61.65 | 8200 | 4.0933 | 1.0 |
0.962 | 63.16 | 8400 | 4.0941 | 1.0 |
0.9041 | 64.66 | 8600 | 4.1163 | 1.0 |
0.8552 | 66.17 | 8800 | 4.1937 | 1.0 |
0.8054 | 67.67 | 9000 | 4.2277 | 1.0 |
0.7457 | 69.17 | 9200 | 4.3899 | 1.0 |
0.7292 | 70.68 | 9400 | 4.3621 | 1.0 |
0.6635 | 72.18 | 9600 | 4.4706 | 1.0 |
0.6333 | 73.68 | 9800 | 4.4571 | 1.0 |
0.6109 | 75.19 | 10000 | 4.4594 | 1.0 |
0.5611 | 76.69 | 10200 | 4.5672 | 1.0 |
0.5286 | 78.2 | 10400 | 4.4957 | 1.0 |
0.4894 | 79.7 | 10600 | 4.5278 | 1.0 |
0.4831 | 81.2 | 10800 | 4.4604 | 1.0 |
0.4575 | 82.71 | 11000 | 4.7439 | 1.0 |
0.4418 | 84.21 | 11200 | 4.6511 | 1.0 |
0.4085 | 85.71 | 11400 | 4.5008 | 1.0 |
0.4011 | 87.22 | 11600 | 4.7690 | 1.0 |
0.3791 | 88.72 | 11800 | 4.8675 | 1.0 |
0.3487 | 90.23 | 12000 | 5.0327 | 1.0 |
0.3661 | 91.73 | 12200 | 4.8084 | 1.0 |
0.3306 | 93.23 | 12400 | 4.9095 | 1.0 |
0.3449 | 94.74 | 12600 | 4.8223 | 1.0 |
0.2949 | 96.24 | 12800 | 4.8245 | 1.0 |
0.2987 | 97.74 | 13000 | 5.0803 | 1.0 |
0.2896 | 99.25 | 13200 | 5.2074 | 1.0 |
0.2731 | 100.75 | 13400 | 5.1951 | 1.0 |
0.2749 | 102.26 | 13600 | 5.2071 | 1.0 |
0.2554 | 103.76 | 13800 | 5.0861 | 1.0 |
0.2436 | 105.26 | 14000 | 5.0851 | 1.0 |
0.2494 | 106.77 | 14200 | 4.8623 | 1.0 |
0.23 | 108.27 | 14400 | 5.0466 | 1.0 |
0.2345 | 109.77 | 14600 | 5.2474 | 1.0 |
0.2233 | 111.28 | 14800 | 4.9394 | 1.0 |
0.2231 | 112.78 | 15000 | 4.9572 | 1.0 |
0.213 | 114.29 | 15200 | 5.3215 | 1.0 |
0.2002 | 115.79 | 15400 | 5.3042 | 1.0 |
0.2023 | 117.29 | 15600 | 5.0279 | 1.0 |
0.2074 | 118.8 | 15800 | 4.9727 | 1.0 |
0.2071 | 120.3 | 16000 | 4.6775 | 1.0 |
0.1915 | 121.8 | 16200 | 4.8386 | 1.0 |
0.1899 | 123.31 | 16400 | 4.7898 | 1.0 |
0.1821 | 124.81 | 16600 | 5.3147 | 1.0 |
0.1908 | 126.32 | 16800 | 5.6218 | 1.0 |
0.1712 | 127.82 | 17000 | 4.6083 | 1.0 |
0.1705 | 129.32 | 17200 | 5.2468 | 1.0 |
0.1664 | 130.83 | 17400 | 5.0412 | 1.0 |
0.167 | 132.33 | 17600 | 5.0116 | 1.0 |
0.162 | 133.83 | 17800 | 5.2799 | 1.0 |
0.1561 | 135.34 | 18000 | 5.2485 | 1.0 |
0.1501 | 136.84 | 18200 | 5.1109 | 1.0 |
0.14 | 138.35 | 18400 | 5.2310 | 1.0 |
0.1576 | 139.85 | 18600 | 5.1631 | 1.0 |
0.1433 | 141.35 | 18800 | 5.3497 | 1.0 |
0.148 | 142.86 | 19000 | 4.8892 | 1.0 |
0.1525 | 144.36 | 19200 | 4.8522 | 1.0 |
0.1517 | 145.86 | 19400 | 4.7830 | 1.0 |
0.139 | 147.37 | 19600 | 5.2041 | 1.0 |
0.1392 | 148.87 | 19800 | 4.7968 | 1.0 |
0.1351 | 150.38 | 20000 | 5.0326 | 1.0 |
0.1355 | 151.88 | 20200 | 5.0474 | 1.0 |
0.138 | 153.38 | 20400 | 4.7491 | 1.0006 |
0.1332 | 154.89 | 20600 | 5.3905 | 1.0 |
0.1252 | 156.39 | 20800 | 4.9815 | 1.0 |
0.1179 | 157.89 | 21000 | 5.3281 | 1.0 |
0.1228 | 159.4 | 21200 | 5.1108 | 1.0006 |
0.1311 | 160.9 | 21400 | 4.8016 | 1.0 |
0.1278 | 162.41 | 21600 | 4.8306 | 1.0 |
0.1209 | 163.91 | 21800 | 4.6413 | 1.0 |
0.1199 | 165.41 | 22000 | 4.6375 | 1.0 |
0.1172 | 166.92 | 22200 | 4.9108 | 1.0 |
0.1247 | 168.42 | 22400 | 4.6139 | 1.0006 |
0.1121 | 169.92 | 22600 | 4.4765 | 1.0006 |
0.125 | 171.43 | 22800 | 4.6819 | 1.0006 |
0.1259 | 172.93 | 23000 | 4.9577 | 1.0 |
0.1044 | 174.44 | 23200 | 5.2993 | 1.0006 |
0.1107 | 175.94 | 23400 | 4.3140 | 1.0 |
0.1142 | 177.44 | 23600 | 4.5850 | 1.0 |
0.0971 | 178.95 | 23800 | 4.8177 | 1.0006 |
0.1186 | 180.45 | 24000 | 4.9972 | 1.0 |
0.1164 | 181.95 | 24200 | 4.5840 | 1.0 |
0.1014 | 183.46 | 24400 | 4.9117 | 0.9994 |
0.1087 | 184.96 | 24600 | 4.5646 | 1.0006 |
0.1075 | 186.47 | 24800 | 4.6995 | 1.0 |
0.1111 | 187.97 | 25000 | 4.7877 | 1.0 |
0.1079 | 189.47 | 25200 | 4.8420 | 1.0 |
0.1053 | 190.98 | 25400 | 5.1083 | 1.0 |
0.1048 | 192.48 | 25600 | 4.2876 | 1.0 |
0.0974 | 193.98 | 25800 | 4.6699 | 1.0006 |
0.0983 | 195.49 | 26000 | 4.6522 | 1.0 |
0.0935 | 196.99 | 26200 | 4.9879 | 1.0 |
0.0948 | 198.5 | 26400 | 4.4146 | 1.0 |
0.0867 | 200.0 | 26600 | 5.1909 | 1.0 |
0.0932 | 201.5 | 26800 | 5.2019 | 1.0 |
0.0951 | 203.01 | 27000 | 3.6893 | 1.0 |
0.085 | 204.51 | 27200 | 4.3071 | 1.0006 |
0.0912 | 206.02 | 27400 | 4.4651 | 1.0 |
0.092 | 207.52 | 27600 | 4.4218 | 1.0 |
0.0936 | 209.02 | 27800 | 5.1391 | 1.0 |
0.0989 | 210.53 | 28000 | 4.8787 | 1.0006 |
0.0898 | 212.03 | 28200 | 4.1418 | 1.0013 |
0.0943 | 213.53 | 28400 | 4.1857 | 1.0 |
0.0834 | 215.04 | 28600 | 4.3519 | 1.0 |
0.0851 | 216.54 | 28800 | 4.3612 | 1.0006 |
0.0932 | 218.05 | 29000 | 4.2200 | 1.0006 |
0.0848 | 219.55 | 29200 | 4.2054 | 1.0 |
0.0873 | 221.05 | 29400 | 4.4815 | 1.0 |
0.0949 | 222.56 | 29600 | 3.9426 | 1.0 |
0.0856 | 224.06 | 29800 | 3.7650 | 1.0 |
0.0768 | 225.56 | 30000 | 3.9774 | 1.0 |
0.0823 | 227.07 | 30200 | 4.3728 | 1.0 |
0.0913 | 228.57 | 30400 | 3.7813 | 1.0 |
0.0951 | 230.08 | 30600 | 4.1581 | 1.0 |
0.0843 | 231.58 | 30800 | 4.6891 | 1.0 |
0.0879 | 233.08 | 31000 | 4.2984 | 1.0 |
0.0807 | 234.59 | 31200 | 3.9511 | 1.0 |
0.0765 | 236.09 | 31400 | 3.8094 | 1.0 |
0.0861 | 237.59 | 31600 | 4.3118 | 1.0 |
0.0596 | 239.1 | 31800 | 4.0774 | 1.0006 |
0.0752 | 240.6 | 32000 | 3.6005 | 1.0 |
0.0729 | 242.11 | 32200 | 4.8616 | 1.0 |
0.0783 | 243.61 | 32400 | 3.9858 | 1.0 |
0.0759 | 245.11 | 32600 | 4.1231 | 1.0 |
0.08 | 246.62 | 32800 | 4.5182 | 1.0 |
0.0782 | 248.12 | 33000 | 3.7721 | 1.0 |
0.0914 | 249.62 | 33200 | 3.5902 | 1.0 |
0.0668 | 251.13 | 33400 | 3.9673 | 1.0 |
0.0798 | 252.63 | 33600 | 3.8693 | 1.0 |
0.0814 | 254.14 | 33800 | 3.9804 | 1.0006 |
0.0775 | 255.64 | 34000 | 3.9483 | 1.0 |
0.0721 | 257.14 | 34200 | 4.6892 | 1.0 |
0.0722 | 258.65 | 34400 | 4.1972 | 1.0 |
0.0755 | 260.15 | 34600 | 4.4523 | 1.0 |
0.0683 | 261.65 | 34800 | 4.1090 | 1.0 |
0.0698 | 263.16 | 35000 | 4.0634 | 1.0 |
0.0712 | 264.66 | 35200 | 4.0469 | 1.0006 |
0.0754 | 266.17 | 35400 | 4.0113 | 1.0006 |
0.0709 | 267.67 | 35600 | 4.0592 | 1.0 |
0.0637 | 269.17 | 35800 | 3.7540 | 1.0 |
0.0688 | 270.68 | 36000 | 3.9645 | 1.0 |
0.0592 | 272.18 | 36200 | 3.7443 | 1.0 |
0.0585 | 273.68 | 36400 | 3.8287 | 1.0 |
0.0734 | 275.19 | 36600 | 3.6780 | 1.0 |
0.058 | 276.69 | 36800 | 4.0194 | 1.0 |
0.0707 | 278.2 | 37000 | 3.6663 | 1.0006 |
0.0728 | 279.7 | 37200 | 3.8640 | 1.0 |
0.064 | 281.2 | 37400 | 4.5473 | 1.0 |
0.0583 | 282.71 | 37600 | 4.1813 | 1.0 |
0.0634 | 284.21 | 37800 | 3.8821 | 1.0 |
0.0565 | 285.71 | 38000 | 3.9566 | 1.0006 |
0.0735 | 287.22 | 38200 | 4.5317 | 1.0 |
0.0797 | 288.72 | 38400 | 3.8040 | 1.0 |
0.0601 | 290.23 | 38600 | 4.0956 | 1.0 |
0.0599 | 291.73 | 38800 | 4.0592 | 1.0 |
0.0517 | 293.23 | 39000 | 3.5204 | 1.0006 |
0.0622 | 294.74 | 39200 | 4.1739 | 1.0 |
0.0705 | 296.24 | 39400 | 4.0262 | 1.0 |
0.0589 | 297.74 | 39600 | 4.2476 | 1.0 |
0.0606 | 299.25 | 39800 | 3.7931 | 1.0 |
0.0603 | 300.75 | 40000 | 4.0540 | 0.9994 |
0.0568 | 302.26 | 40200 | 3.5900 | 1.0 |
0.0583 | 303.76 | 40400 | 3.8095 | 1.0 |
0.0513 | 305.26 | 40600 | 3.8949 | 1.0 |
0.0637 | 306.77 | 40800 | 3.8085 | 1.0 |
0.0659 | 308.27 | 41000 | 4.2311 | 1.0 |
0.068 | 309.77 | 41200 | 3.4876 | 1.0006 |
0.0616 | 311.28 | 41400 | 3.7634 | 1.0 |
0.0515 | 312.78 | 41600 | 3.8762 | 1.0 |
0.0584 | 314.29 | 41800 | 4.2070 | 1.0 |
0.054 | 315.79 | 42000 | 3.9088 | 1.0 |
0.0571 | 317.29 | 42200 | 3.9679 | 1.0006 |
0.0497 | 318.8 | 42400 | 3.8443 | 1.0 |
0.0507 | 320.3 | 42600 | 4.2397 | 1.0 |
0.0612 | 321.8 | 42800 | 4.2228 | 1.0 |
0.0467 | 323.31 | 43000 | 3.6684 | 1.0 |
0.0586 | 324.81 | 43200 | 3.8685 | 1.0013 |
0.0557 | 326.32 | 43400 | 4.3341 | 1.0006 |
0.0584 | 327.82 | 43600 | 3.6683 | 1.0 |
0.0575 | 329.32 | 43800 | 3.9005 | 1.0 |
0.0571 | 330.83 | 44000 | 3.8594 | 1.0 |
0.0471 | 332.33 | 44200 | 3.6871 | 1.0 |
0.055 | 333.83 | 44400 | 4.0402 | 1.0 |
0.0422 | 335.34 | 44600 | 4.0226 | 1.0 |
0.0422 | 336.84 | 44800 | 3.5907 | 1.0 |
0.0513 | 338.35 | 45000 | 3.7380 | 1.0 |
0.0593 | 339.85 | 45200 | 3.8530 | 1.0 |
0.0446 | 341.35 | 45400 | 4.0879 | 1.0 |
0.0492 | 342.86 | 45600 | 3.8984 | 1.0 |
0.0422 | 344.36 | 45800 | 4.2423 | 1.0 |
0.0478 | 345.86 | 46000 | 3.6391 | 1.0 |
0.0425 | 347.37 | 46200 | 4.2352 | 1.0 |
0.0426 | 348.87 | 46400 | 4.0004 | 1.0 |
0.0566 | 350.38 | 46600 | 4.0957 | 1.0006 |
0.0522 | 351.88 | 46800 | 3.9436 | 0.9994 |
0.0503 | 353.38 | 47000 | 4.3325 | 1.0 |
0.0513 | 354.89 | 47200 | 3.5738 | 0.9994 |
0.0428 | 356.39 | 47400 | 3.8233 | 0.9994 |
0.0402 | 357.89 | 47600 | 3.6210 | 1.0006 |
0.0575 | 359.4 | 47800 | 3.6991 | 1.0 |
0.0459 | 360.9 | 48000 | 3.8384 | 1.0 |
0.0423 | 362.41 | 48200 | 4.2164 | 1.0 |
0.0401 | 363.91 | 48400 | 4.0001 | 1.0 |
0.0612 | 365.41 | 48600 | 4.1363 | 0.9994 |
0.0492 | 366.92 | 48800 | 4.0748 | 0.9994 |
0.0467 | 368.42 | 49000 | 3.6856 | 0.9994 |
0.0565 | 369.92 | 49200 | 4.1829 | 1.0 |
0.0351 | 371.43 | 49400 | 3.9579 | 1.0006 |
0.0499 | 372.93 | 49600 | 3.8893 | 1.0 |
0.0477 | 374.44 | 49800 | 3.5199 | 1.0 |
0.0471 | 375.94 | 50000 | 4.0405 | 1.0013 |
0.037 | 377.44 | 50200 | 3.8785 | 1.0006 |
0.0382 | 378.95 | 50400 | 4.2958 | 1.0013 |
0.0553 | 380.45 | 50600 | 4.3845 | 1.0006 |
0.0389 | 381.95 | 50800 | 3.7282 | 1.0013 |
0.0373 | 383.46 | 51000 | 4.0840 | 1.0006 |
0.0597 | 384.96 | 51200 | 4.0250 | 1.0006 |
0.0404 | 386.47 | 51400 | 3.6077 | 0.9994 |
0.0501 | 387.97 | 51600 | 3.5198 | 0.9994 |
0.0432 | 389.47 | 51800 | 3.7678 | 1.0 |
0.0462 | 390.98 | 52000 | 3.6467 | 1.0 |
0.0444 | 392.48 | 52200 | 3.8941 | 1.0006 |
0.0494 | 393.98 | 52400 | 3.6969 | 1.0 |
0.0402 | 395.49 | 52600 | 3.5324 | 1.0006 |
0.0402 | 396.99 | 52800 | 3.8874 | 1.0006 |
0.0395 | 398.5 | 53000 | 3.3793 | 1.0006 |
0.0367 | 400.0 | 53200 | 3.6539 | 1.0013 |
0.0374 | 401.5 | 53400 | 3.4230 | 1.0 |
0.0407 | 403.01 | 53600 | 3.6068 | 1.0 |
0.0378 | 404.51 | 53800 | 3.5291 | 1.0013 |
0.0471 | 406.02 | 54000 | 3.3563 | 1.0006 |
0.0336 | 407.52 | 54200 | 2.9932 | 1.0044 |
0.032 | 409.02 | 54400 | 3.3549 | 1.0006 |
0.0474 | 410.53 | 54600 | 3.1140 | 1.0013 |
0.0402 | 412.03 | 54800 | 2.8515 | 1.0075 |
0.0366 | 413.53 | 55000 | 3.1142 | 1.0050 |
0.041 | 415.04 | 55200 | 3.0917 | 1.0056 |
0.0358 | 416.54 | 55400 | 3.3401 | 1.0006 |
0.0299 | 418.05 | 55600 | 3.5304 | 1.0 |
0.0512 | 419.55 | 55800 | 3.4768 | 1.0 |
0.0374 | 421.05 | 56000 | 3.2792 | 0.9994 |
0.037 | 422.56 | 56200 | 3.0088 | 1.0013 |
0.0395 | 424.06 | 56400 | 3.0185 | 0.9994 |
0.039 | 425.56 | 56600 | 3.0249 | 1.0 |
0.0345 | 427.07 | 56800 | 3.3437 | 1.0 |
0.0438 | 428.57 | 57000 | 3.0905 | 1.0 |
0.0373 | 430.08 | 57200 | 3.4256 | 1.0019 |
0.0362 | 431.58 | 57400 | 3.4747 | 1.0006 |
0.0353 | 433.08 | 57600 | 3.3952 | 1.0019 |
0.0363 | 434.59 | 57800 | 3.3967 | 1.0006 |
0.0234 | 436.09 | 58000 | 3.5076 | 0.9994 |
0.0347 | 437.59 | 58200 | 3.4128 | 0.9987 |
0.039 | 439.1 | 58400 | 3.5784 | 1.0013 |
0.041 | 440.6 | 58600 | 3.6292 | 1.0 |
📄 许可证
本模型采用 Apache 2.0 许可证。
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别 支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers 支持多种语言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别 日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers 支持多种语言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别 阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98