20220415 210530
2
20220415 210530
由 lilitket 开发
该模型是基于facebook/wav2vec2-xls-r-2b在common_voice数据集上微调的语音识别模型
下载量 20
发布时间 : 4/15/2022
模型简介
这是一个用于语音识别任务的微调模型,基于wav2vec2-xls-r-2b架构,在common_voice数据集上进行训练
模型特点
大规模预训练模型微调
基于20亿参数的wav2vec2-xls-r-2b模型进行微调
相对较低的词错误率
在评估集上取得0.3881的词错误率
高效训练
使用梯度累积等技术优化训练过程
模型能力
语音转文本
自动语音识别
使用案例
语音转录
语音转文字服务
将语音内容转换为文字记录
词错误率0.3881
辅助技术
实时字幕生成
为视频或直播内容生成实时字幕
🚀 20220415 - 210530
此模型是 facebook/wav2vec2 - xls - r - 2b 在 Common Voice 数据集上的微调版本。它在评估集上取得了以下结果:
- 损失:0.6544
- 字错率(WER):0.3881
🚀 快速开始
本模型是基于 facebook/wav2vec2-xls-r-2b
在 common_voice
数据集上微调得到的语音识别模型。你可以根据以下训练信息进一步了解模型的性能和训练过程。
🔧 技术细节
训练超参数
训练过程中使用了以下超参数:
- 学习率(learning_rate):1e - 05
- 训练批次大小(train_batch_size):1
- 评估批次大小(eval_batch_size):8
- 随机种子(seed):42
- 梯度累积步数(gradient_accumulation_steps):8
- 总训练批次大小(total_train_batch_size):8
- 优化器(optimizer):Adam,β1 = 0.9,β2 = 0.999,ε = 1e - 08
- 学习率调度器类型(lr_scheduler_type):线性
- 学习率调度器热身步数(lr_scheduler_warmup_steps):400
- 训练轮数(num_epochs):1200
- 混合精度训练(mixed_precision_training):原生自动混合精度(Native AMP)
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | 字错率(WER) |
---|---|---|---|---|
6.1495 | 2.27 | 200 | 2.4098 | 1.0 |
0.4347 | 4.54 | 400 | 1.4211 | 0.9914 |
0.2295 | 6.82 | 600 | 1.0229 | 0.9349 |
0.1349 | 9.09 | 800 | 1.0063 | 0.9228 |
0.1001 | 11.36 | 1000 | 1.0333 | 0.9197 |
0.0847 | 13.63 | 1200 | 0.9021 | 0.8725 |
0.0697 | 15.91 | 1400 | 0.9117 | 0.8779 |
0.0634 | 18.18 | 1600 | 0.9550 | 0.8725 |
0.0607 | 20.45 | 1800 | 0.9063 | 0.8303 |
0.0551 | 22.73 | 2000 | 0.8163 | 0.7956 |
0.0536 | 25.0 | 2200 | 0.7385 | 0.7235 |
0.0511 | 27.27 | 2400 | 0.7917 | 0.7215 |
0.0449 | 29.54 | 2600 | 0.7508 | 0.6938 |
0.0417 | 31.82 | 2800 | 0.6892 | 0.6775 |
0.0415 | 34.09 | 3000 | 0.7029 | 0.6790 |
0.0384 | 36.36 | 3200 | 0.6839 | 0.6895 |
0.0392 | 38.63 | 3400 | 0.7067 | 0.6872 |
0.0358 | 40.91 | 3600 | 0.7310 | 0.6763 |
0.0337 | 43.18 | 3800 | 0.7139 | 0.6548 |
0.0362 | 45.45 | 4000 | 0.6975 | 0.6427 |
0.0311 | 47.73 | 4200 | 0.7054 | 0.6412 |
0.0327 | 50.0 | 4400 | 0.6530 | 0.6151 |
0.0286 | 52.27 | 4600 | 0.6565 | 0.6076 |
0.0304 | 54.54 | 4800 | 0.6931 | 0.6283 |
0.0285 | 56.82 | 5000 | 0.6966 | 0.6108 |
0.0279 | 59.09 | 5200 | 0.6473 | 0.5854 |
0.0276 | 61.36 | 5400 | 0.6497 | 0.5920 |
0.0238 | 63.63 | 5600 | 0.6283 | 0.5846 |
0.0237 | 65.91 | 5800 | 0.6871 | 0.5885 |
0.0221 | 68.18 | 6000 | 0.6518 | 0.5593 |
0.0221 | 70.45 | 6200 | 0.6676 | 0.5601 |
0.0215 | 72.73 | 6400 | 0.6299 | 0.5550 |
0.022 | 75.0 | 6600 | 0.6719 | 0.5636 |
0.0198 | 77.27 | 6800 | 0.6082 | 0.5569 |
0.0222 | 79.54 | 7000 | 0.6156 | 0.5589 |
0.0172 | 81.82 | 7200 | 0.6414 | 0.5636 |
0.0188 | 84.09 | 7400 | 0.5874 | 0.5347 |
0.0202 | 86.36 | 7600 | 0.6320 | 0.5421 |
0.0165 | 88.63 | 7800 | 0.6345 | 0.5304 |
0.0164 | 90.91 | 8000 | 0.6243 | 0.5289 |
0.0167 | 93.18 | 8200 | 0.6237 | 0.5285 |
0.015 | 95.45 | 8400 | 0.5937 | 0.5203 |
0.0169 | 97.73 | 8600 | 0.6171 | 0.5343 |
0.0147 | 100.0 | 8800 | 0.6857 | 0.5476 |
0.0164 | 102.27 | 9000 | 0.6099 | 0.5160 |
0.0152 | 104.54 | 9200 | 0.6319 | 0.5285 |
0.0149 | 106.82 | 9400 | 0.6133 | 0.5296 |
0.0155 | 109.09 | 9600 | 0.6237 | 0.5285 |
0.0149 | 111.36 | 9800 | 0.6127 | 0.5012 |
0.0142 | 113.63 | 10000 | 0.6119 | 0.4836 |
0.013 | 115.91 | 10200 | 0.5974 | 0.4746 |
0.012 | 118.18 | 10400 | 0.6296 | 0.5016 |
0.0137 | 120.45 | 10600 | 0.5990 | 0.5023 |
0.0146 | 122.73 | 10800 | 0.5784 | 0.4875 |
0.0117 | 125.0 | 11000 | 0.5436 | 0.4766 |
0.0133 | 127.27 | 11200 | 0.5890 | 0.5020 |
0.0133 | 129.54 | 11400 | 0.6028 | 0.4895 |
0.0119 | 131.82 | 11600 | 0.5483 | 0.4840 |
0.0133 | 134.09 | 11800 | 0.5638 | 0.4934 |
0.0108 | 136.36 | 12000 | 0.5750 | 0.4758 |
0.0098 | 138.63 | 12200 | 0.5978 | 0.4891 |
0.012 | 140.91 | 12400 | 0.5524 | 0.4805 |
0.01 | 143.18 | 12600 | 0.5731 | 0.4895 |
0.0125 | 145.45 | 12800 | 0.5583 | 0.4579 |
0.0102 | 147.73 | 13000 | 0.5806 | 0.5035 |
0.01 | 150.0 | 13200 | 0.5721 | 0.4711 |
0.0113 | 152.27 | 13400 | 0.5351 | 0.4602 |
0.011 | 154.54 | 13600 | 0.5472 | 0.4551 |
0.0078 | 156.82 | 13800 | 0.6011 | 0.4610 |
0.0105 | 159.09 | 14000 | 0.5702 | 0.4672 |
0.0081 | 161.36 | 14200 | 0.5643 | 0.4454 |
0.0088 | 163.63 | 14400 | 0.5084 | 0.4536 |
0.0094 | 165.91 | 14600 | 0.5320 | 0.4680 |
0.0083 | 168.18 | 14800 | 0.5175 | 0.4423 |
0.0095 | 170.45 | 15000 | 0.5213 | 0.4583 |
0.0097 | 172.73 | 15200 | 0.5242 | 0.4590 |
0.0092 | 175.0 | 15400 | 0.5680 | 0.4587 |
0.0081 | 177.27 | 15600 | 0.5668 | 0.4579 |
0.0075 | 179.54 | 15800 | 0.5602 | 0.4489 |
0.0094 | 181.82 | 16000 | 0.5540 | 0.4485 |
0.0083 | 184.09 | 16200 | 0.5367 | 0.4278 |
0.0084 | 186.36 | 16400 | 0.5376 | 0.4583 |
0.0093 | 188.63 | 16600 | 0.5599 | 0.4310 |
0.0085 | 190.91 | 16800 | 0.5356 | 0.4317 |
0.0066 | 193.18 | 17000 | 0.5517 | 0.4419 |
0.0074 | 195.45 | 17200 | 0.5401 | 0.4329 |
0.0094 | 197.73 | 17400 | 0.5067 | 0.4415 |
0.0078 | 200.0 | 17600 | 0.5410 | 0.4466 |
0.0085 | 202.27 | 17800 | 0.5157 | 0.4321 |
0.0081 | 204.54 | 18000 | 0.5390 | 0.4255 |
0.0068 | 206.82 | 18200 | 0.5566 | 0.4415 |
0.0069 | 209.09 | 18400 | 0.5693 | 0.4341 |
0.0089 | 211.36 | 18600 | 0.5588 | 0.4438 |
0.0086 | 213.63 | 18800 | 0.5656 | 0.4470 |
0.008 | 215.91 | 19000 | 0.5712 | 0.4438 |
0.0083 | 218.18 | 19200 | 0.5627 | 0.4423 |
0.0078 | 220.45 | 19400 | 0.5905 | 0.4298 |
0.0059 | 222.73 | 19600 | 0.5746 | 0.4228 |
0.0072 | 225.0 | 19800 | 0.5362 | 0.4275 |
0.006 | 227.27 | 20000 | 0.5909 | 0.4220 |
0.0074 | 229.54 | 20200 | 0.5863 | 0.4224 |
0.0079 | 231.82 | 20400 | 0.5366 | 0.4306 |
0.0066 | 234.09 | 20600 | 0.5128 | 0.4302 |
0.0068 | 236.36 | 20800 | 0.5436 | 0.4228 |
0.0073 | 238.63 | 21000 | 0.5731 | 0.4325 |
0.0081 | 240.91 | 21200 | 0.5189 | 0.4177 |
0.0061 | 243.18 | 21400 | 0.5593 | 0.4236 |
0.0061 | 245.45 | 21600 | 0.5553 | 0.4267 |
0.0044 | 247.73 | 21800 | 0.5763 | 0.4286 |
0.0064 | 250.0 | 22000 | 0.5360 | 0.4321 |
0.006 | 252.27 | 22200 | 0.5577 | 0.4372 |
0.0052 | 254.54 | 22400 | 0.5387 | 0.4122 |
0.0054 | 256.82 | 22600 | 0.5117 | 0.4239 |
0.0057 | 259.09 | 22800 | 0.5498 | 0.4232 |
0.0069 | 261.36 | 23000 | 0.5263 | 0.4353 |
0.005 | 263.63 | 23200 | 0.5147 | 0.4177 |
0.0058 | 265.91 | 23400 | 0.5273 | 0.4173 |
0.006 | 268.18 | 23600 | 0.5879 | 0.4380 |
0.0059 | 270.45 | 23800 | 0.5377 | 0.4349 |
0.0055 | 272.73 | 24000 | 0.6061 | 0.4364 |
0.0058 | 275.0 | 24200 | 0.5977 | 0.4353 |
0.0051 | 277.27 | 24400 | 0.5847 | 0.4208 |
0.0046 | 279.54 | 24600 | 0.5728 | 0.4333 |
0.006 | 281.82 | 24800 | 0.5392 | 0.4204 |
0.0074 | 284.09 | 25000 | 0.5618 | 0.4232 |
0.0058 | 286.36 | 25200 | 0.5449 | 0.4197 |
0.0057 | 288.63 | 25400 | 0.5635 | 0.4169 |
0.0054 | 290.91 | 25600 | 0.5313 | 0.4173 |
0.0044 | 293.18 | 25800 | 0.5544 | 0.4306 |
0.0039 | 295.45 | 26000 | 0.5392 | 0.4247 |
0.0054 | 297.73 | 26200 | 0.5395 | 0.4271 |
0.0044 | 300.0 | 26400 | 0.5489 | 0.4228 |
0.0042 | 302.27 | 26600 | 0.5414 | 0.4173 |
0.0051 | 304.54 | 26800 | 0.5198 | 0.4193 |
0.005 | 306.82 | 27000 | 0.5297 | 0.4146 |
0.0051 | 309.09 | 27200 | 0.5414 | 0.4212 |
0.0057 | 311.36 | 27400 | 0.5204 | 0.4228 |
0.0049 | 313.63 | 27600 | 0.5806 | 0.4239 |
0.0036 | 315.91 | 27800 | 0.5771 | 0.4173 |
0.0045 | 318.18 | 28000 | 0.5517 | 0.4239 |
0.0051 | 320.45 | 28200 | 0.5498 | 0.4173 |
0.0043 | 322.73 | 28400 | 0.5791 | 0.4181 |
0.0044 | 325.0 | 28600 | 0.6030 | 0.4200 |
0.0067 | 327.27 | 28800 | 0.5799 | 0.4208 |
0.0041 | 329.54 | 29000 | 0.5871 | 0.4134 |
0.0048 | 331.82 | 29200 | 0.5471 | 0.4158 |
0.0031 | 334.09 | 29400 | 0.5977 | 0.4220 |
0.0042 | 336.36 | 29600 | 0.5813 | 0.4181 |
0.0045 | 338.63 | 29800 | 0.6167 | 0.4306 |
0.0044 | 340.91 | 30000 | 0.5661 | 0.4173 |
0.0029 | 343.18 | 30200 | 0.5680 | 0.4158 |
0.0037 | 345.45 | 30400 | 0.5747 | 0.4204 |
0.005 | 347.73 | 30600 | 0.5883 | 0.4349 |
0.0037 | 350.0 | 30800 | 0.6187 | 0.4189 |
0.0044 | 352.27 | 31000 | 0.5834 | 0.4431 |
0.0047 | 354.54 | 31200 | 0.5567 | 0.4247 |
0.0039 | 356.82 | 31400 | 0.5900 | 0.4314 |
0.0044 | 359.09 | 31600 | 0.5879 | 0.4216 |
0.0042 | 361.36 | 31800 | 0.5639 | 0.4220 |
0.0046 | 363.63 | 32000 | 0.5292 | 0.4185 |
0.0043 | 365.91 | 32200 | 0.5640 | 0.4353 |
0.0033 | 368.18 | 32400 | 0.5468 | 0.4208 |
0.002 | 370.45 | 32600 | 0.5836 | 0.4220 |
0.0043 | 372.73 | 32800 | 0.5692 | 0.4142 |
0.0038 | 375.0 | 33000 | 0.5739 | 0.4177 |
0.0039 | 377.27 | 33200 | 0.5824 | 0.4103 |
0.0028 | 379.54 | 33400 | 0.6069 | 0.4111 |
0.0038 | 381.82 | 33600 | 0.5868 | 0.4185 |
0.0041 | 384.09 | 33800 | 0.5169 | 0.4126 |
0.0037 | 386.36 | 34000 | 0.5395 | 0.4275 |
0.0063 | 388.63 | 34200 | 0.5293 | 0.4294 |
0.0042 | 390.91 | 34400 | 0.5472 | 0.4165 |
0.0039 | 393.18 | 34600 | 0.5391 | 0.4091 |
0.0036 | 395.45 | 34800 | 0.5360 | 0.4239 |
0.0036 | 397.73 | 35000 | 0.5511 | 0.4177 |
0.0019 | 400.0 | 35200 | 0.5775 | 0.4115 |
0.0038 | 402.27 | 35400 | 0.5376 | 0.4087 |
0.0035 | 404.54 | 35600 | 0.5755 | 0.4130 |
0.0042 | 406.82 | 35800 | 0.5443 | 0.4087 |
0.0036 | 409.09 | 36000 | 0.6091 | 0.4200 |
0.004 | 411.36 | 36200 | 0.5817 | 0.4247 |
0.0039 | 413.63 | 36400 | 0.5779 | 0.4255 |
0.003 | 415.91 | 36600 | 0.5804 | 0.4224 |
0.0031 | 418.18 | 36800 | 0.5467 | 0.4138 |
0.0044 | 420.45 | 37000 | 0.5628 | 0.4212 |
0.0036 | 422.73 | 37200 | 0.5613 | 0.4267 |
0.0035 | 425.0 | 37400 | 0.5537 | 0.4224 |
0.0028 | 427.27 | 37600 | 0.6016 | 0.4161 |
0.004 | 429.54 | 37800 | 0.5711 | 0.4216 |
0.0041 | 431.82 | 38000 | 0.5510 | 0.4165 |
0.0035 | 434.09 | 38200 | 0.5487 | 0.4181 |
0.0034 | 436.36 | 38400 | 0.5392 | 0.4056 |
0.003 | 438.63 | 38600 | 0.5255 | 0.4083 |
0.0035 | 440.91 | 38800 | 0.5511 | 0.4138 |
0.0031 | 443.18 | 39000 | 0.5464 | 0.4146 |
0.0032 | 445.45 | 39200 | 0.5514 | 0.4134 |
0.0017 | 447.73 | 39400 | 0.5664 | 0.4064 |
0.0024 | 450.0 | 39600 | 0.5966 | 0.4220 |
0.0021 | 452.27 | 39800 | 0.5780 | 0.4122 |
0.0035 | 454.54 | 40000 | 0.5612 | 0.4341 |
0.002 | 456.82 | 40200 | 0.5954 | 0.4247 |
0.0018 | 459.09 | 40400 | 0.6006 | 0.4251 |
0.0026 | 461.36 | 40600 | 0.6119 | 0.4232 |
0.0023 | 463.63 | 40800 | 0.6051 | 0.4306 |
0.003 | 465.91 | 41000 | 0.5872 | 0.4267 |
0.0036 | 468.18 | 41200 | 0.5602 | 0.4095 |
0.0029 | 470.45 | 41400 | 0.5877 | 0.4189 |
0.0034 | 472.73 | 41600 | 0.5918 | 0.4337 |
0.0025 | 475.0 | 41800 | 0.6101 | 0.4337 |
0.0023 | 477.27 | 42000 | 0.5936 | 0.4239 |
0.0017 | 479.54 | 42200 | 0.6257 | 0.4275 |
0.0029 | 481.82 | 42400 | 0.6265 | 0.4251 |
0.0035 | 484.09 | 42600 | 0.6035 | 0.4271 |
0.0036 | 486.36 | 42800 | 0.5954 | 0.4243 |
0.0028 | 488.63 | 43000 | 0.5810 | 0.4259 |
0.0027 | 490.91 | 43200 | 0.6093 | 0.4228 |
0.0025 | 493.18 | 43400 | 0.6241 | 0.4302 |
0.0019 | 495.45 | 43600 | 0.6143 | 0.4290 |
0.0025 | 497.73 | 43800 | 0.5729 | 0.4189 |
0.0028 | 500.0 | 44000 | 0.5725 | 0.4165 |
0.0023 | 502.27 | 44200 | 0.5888 | 0.4263 |
0.0034 | 504.54 | 44400 | 0.5771 | 0.4337 |
0.0022 | 506.82 | 44600 | 0.5888 | 0.4216 |
0.0028 | 509.09 | 44800 | 0.5598 | 0.4181 |
0.0024 | 511.36 | 45000 | 0.6114 | 0.4392 |
0.0037 | 513.63 | 45200 | 0.5855 | 0.4236 |
0.0018 | 515.91 | 45400 | 0.5885 | 0.4232 |
0.0025 | 518.18 | 45600 | 0.5845 | 0.4255 |
0.0029 | 520.45 | 45800 | 0.5862 | 0.4380 |
0.0034 | 522.73 | 46000 | 0.5807 | 0.4329 |
0.0025 | 525.0 | 46200 | 0.5959 | 0.4189 |
0.0025 | 527.27 | 46400 | 0.5939 | 0.4216 |
0.0022 | 529.54 | 46600 | 0.5964 | 0.4232 |
0.003 | 531.82 | 46800 | 0.5664 | 0.4173 |
0.0021 | 534.09 | 47000 | 0.5670 | 0.4138 |
0.0025 | 536.36 | 47200 | 0.5611 | 0.4247 |
0.0024 | 538.63 | 47400 | 0.5691 | 0.4321 |
0.0019 | 540.91 | 47600 | 0.5992 | 0.4224 |
0.0037 | 543.18 | 47800 | 0.5790 | 0.4181 |
0.0025 | 545.45 | 48000 | 0.5650 | 0.4294 |
0.0025 | 547.73 | 48200 | 0.5732 | 0.4189 |
0.0025 | 550.0 | 48400 | 0.5566 | 0.4220 |
0.0023 | 552.27 | 48600 | 0.5646 | 0.4236 |
0.0027 | 554.54 | 48800 | 0.5437 | 0.4263 |
0.0026 | 556.82 | 49000 | 0.5993 | 0.4239 |
0.0017 | 559.09 | 49200 | 0.6158 | 0.4212 |
0.002 | 561.36 | 49400 | 0.6104 | 0.4064 |
0.0028 | 563.63 | 49600 | 0.5689 | 0.4021 |
0.0025 | 565.91 | 49800 | 0.5760 | 0.4029 |
0.0024 | 568.18 | 50000 | 0.5700 | 0.4037 |
0.0024 | 570.45 | 50200 | 0.5509 | 0.3935 |
0.0018 | 572.73 | 50400 | 0.5562 | 0.4048 |
0.0018 | 575.0 | 50600 | 0.5786 | 0.3955 |
0.0023 | 577.27 | 50800 | 0.5855 | 0.3959 |
0.0017 | 579.54 | 51000 | 0.5988 | 0.3939 |
0.0021 | 581.82 | 51200 | 0.6132 | 0.4064 |
0.0017 | 584.09 | 51400 | 0.6202 | 0.4099 |
0.0019 | 586.36 | 51600 | 0.6118 | 0.4048 |
0.0023 | 588.63 | 51800 | 0.6114 | 0.4158 |
0.0019 | 590.91 | 52000 | 0.5808 | 0.4126 |
0.0025 | 593.18 | 52200 | 0.5906 | 0.4037 |
0.0016 | 595.45 | 52400 | 0.5965 | 0.4056 |
0.0021 | 597.73 | 52600 | 0.6126 | 0.4099 |
0.0019 | 600.0 | 52800 | 0.5913 | 0.4060 |
0.0014 | 602.27 | 53000 | 0.6450 | 0.4076 |
0.0021 | 604.54 | 53200 | 0.6500 | 0.4189 |
0.002 | 606.82 | 53400 | 0.6026 | 0.4111 |
0.0022 | 609.09 | 53600 | 0.6318 | 0.4099 |
0.003 | 611.36 | 53800 | 0.6038 | 0.4111 |
0.0022 | 613.63 | 54000 | 0.6086 | 0.4083 |
0.0013 | 615.91 | 54200 | 0.6320 | 0.4025 |
0.0016 | 618.18 | 54400 | 0.6159 | 0.3974 |
0.0018 | 620.45 | 54600 | 0.6266 | 0.3998 |
0.002 | 622.73 | 54800 | 0.5920 | 0.3994 |
0.001 | 625.0 | 55000 | 0.6196 | 0.3935 |
0.0018 | 627.27 | 55200 | 0.6468 | 0.4009 |
0.002 | 629.54 | 55400 | 0.6505 | 0.4052 |
0.002 | 631.82 | 55600 | 0.6362 | 0.4072 |
0.0018 | 634.09 | 55800 | 0.6430 | 0.3963 |
0.0017 | 636.36 | 56000 | 0.6434 | 0.3966 |
0.0014 | 638.63 | 56200 | 0.6473 | 0.4080 |
0.0021 | 640.91 | 56400 | 0.6272 | 0.4115 |
0.0026 | 643.18 | 56600 | 0.6343 | 0.4099 |
0.0023 | 645.45 | 56800 | 0.6223 | 0.4025 |
0.0016 | 647.73 | 57000 | 0.5879 | 0.4025 |
0.001 | 650.0 | 57200 | 0.6274 | 0.4005 |
0.0019 | 652.27 | 57400 | 0.6517 | 0.4044 |
0.0011 | 654.54 | 57600 | 0.6571 | 0.4080 |
0.002 | 656.82 | 57800 | 0.6377 | 0.4087 |
0.0024 | 659.09 | 58000 | 0.6013 | 0.4146 |
0.0021 | 661.36 | 58200 | 0.5985 | 0.4185 |
0.0018 | 663.63 | 58400 | 0.6148 | 0.4154 |
📄 许可证
本模型采用 Apache 2.0 许可证。
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别 支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers 支持多种语言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别 日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers 支持多种语言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别 阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98