🚀 Wav2Vec2-Conformer-Large-960h 带相对位置嵌入
Wav2Vec2-Conformer 带有相对位置嵌入,在16kHz采样的语音音频上进行了预训练,并在960小时的Librispeech数据集上进行了微调。使用该模型时,请确保您的语音输入也是16kHz采样的。
📚 详细文档
Wav2Vec2-Conformer的实验结果可在官方论文的表3和表4中找到。
原始模型可在https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20 找到。
📦 模型信息
属性 |
详情 |
模型类型 |
Wav2Vec2-Conformer-Large-960h 带相对位置嵌入 |
训练数据 |
LibriSpeech ASR |
标签 |
语音、音频、自动语音识别、HF自动语音识别排行榜 |
许可证 |
Apache-2.0 |
📊 评估结果
任务 |
数据集 |
指标 |
值 |
自动语音识别 |
LibriSpeech (clean) |
测试字错率 (WER) |
1.85 |
自动语音识别 |
LibriSpeech (other) |
测试字错率 (WER) |
3.83 |
💻 使用示例
基础用法
from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC
from datasets import load_dataset
import torch
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft")
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft")
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
评估示例
此代码片段展示了如何在LibriSpeech的“clean”和“other”测试数据上评估facebook/wav2vec2-conformer-rel-pos-large-960h-ft。
from datasets import load_dataset
from transformers import Wav2Vec2ConformerForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
def map_to_pred(batch):
inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest")
input_values = inputs.input_values.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
结果 (字错率 WER):
"clean" |
"other" |
1.85 |
3.82 |