🚀 Wav2Vec2-Conformer-Large-960h 帶相對位置嵌入
Wav2Vec2-Conformer 帶有相對位置嵌入,在16kHz採樣的語音音頻上進行了預訓練,並在960小時的Librispeech數據集上進行了微調。使用該模型時,請確保您的語音輸入也是16kHz採樣的。
📚 詳細文檔
Wav2Vec2-Conformer的實驗結果可在官方論文的表3和表4中找到。
原始模型可在https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20 找到。
📦 模型信息
屬性 |
詳情 |
模型類型 |
Wav2Vec2-Conformer-Large-960h 帶相對位置嵌入 |
訓練數據 |
LibriSpeech ASR |
標籤 |
語音、音頻、自動語音識別、HF自動語音識別排行榜 |
許可證 |
Apache-2.0 |
📊 評估結果
任務 |
數據集 |
指標 |
值 |
自動語音識別 |
LibriSpeech (clean) |
測試字錯率 (WER) |
1.85 |
自動語音識別 |
LibriSpeech (other) |
測試字錯率 (WER) |
3.83 |
💻 使用示例
基礎用法
from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC
from datasets import load_dataset
import torch
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft")
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft")
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
評估示例
此代碼片段展示瞭如何在LibriSpeech的“clean”和“other”測試數據上評估facebook/wav2vec2-conformer-rel-pos-large-960h-ft。
from datasets import load_dataset
from transformers import Wav2Vec2ConformerForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
def map_to_pred(batch):
inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest")
input_values = inputs.input_values.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
結果 (字錯率 WER):
"clean" |
"other" |
1.85 |
3.82 |